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Abstract

Tumor necrosis factor (TNF) is an important proinflammatory cytokine that is upregulated in Alzheimer disease (AD) patients and
involved with AD genes. Several TNF promoter polymorphisms that increase expression are associated with inflammatory and infectious
diseases. We previously reported results that detected a AD associated region near the TNF gene. Using family-based association tests we
also reported an association between AD and a TNF haplotype in sibling-pair families, and a significant increase in the mean age of onset
for a group of African-American AD patients carrying this same haplotype. Previous reports have shown that that the chromosome 1p and
chromosome 12p regions are linked to late-onset AD. These two regions harbor TNF receptors (TNFR) 2 and 1, respectively, and binding
to them mediates biological effects of TNF. We found a significant asssociation of a TNFR2 exon 6 polymorphism with late-onset AD in
families with no individuals possessing the APOE E4E4 genotype under a dominant model. We found no significant association of three
polymorphisms in the TNFR1 gene to AD. These results provide further evidence for the involvement of TNF in the pathogenesis of AD.
© 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

1.1. Tumor necrosis factor

Tumor necrosis factor (TNF) is one of the main proin-
flammatory cytokines that plays a central role in initiating
and regulating the cytokine cascade during an inflammatory
response [53,89]. Expression of TNF can be induced by
bacterial lipopolysaccharide (LPS), mitogens and viruses
[149]. It participates in local and systemic events involving
inflammation. Along with interferon gamma (IFN-�), TNF
is a potent paracrine stimulator of other inflammatory cy-
tokines, including interleukin-1 (IL-1)-1), IL-6, IL-8, and
granulocyte-monocyte colony-stimulating factor. They in
turn continue and amplify the response in various ways,
such as activating T and B cells and stimulating acute-phase
protein synthesis, including colony-stimulating factor [26,
124].

TNF’s effect on vascular endothelial cells include, mor-

phological changes, modulation of expression of surface
antigens, and elaboration of procoagulant activity [see 10
for review]. TNF increases the expression of adhesion mol-
ecules on the vascular endothelium which can allow leuko-
cytes and immune cells, such as neutrophils and macro-
phages, to be attracted to areas of tissue damage and
infection [6,48]. For example, neutrophils migrate into the
intravascular space and release biologically active sub-
stances like lysozyme and hydrogen peroxide which leads to
degranulation [11]. LPS activated mononuclear phagocytes
are the major producer of TNF and TNF-activated phago-
cytes engulf and clear infectious agents and cellular debris
[55,149]. TNF is the most abundant product of activated
macrophages [11]. In the presence of IFN-�, the synthesis
of TNF by LPS activated macrophages is further enhanced
causing them to differentiate and activate nitric oxide syn-
thase which, in turn induces nitric oxide production that
effects the killing of microorganisms. In the absence of
IFN-�, TNF stimulates macrophages to differentiate along a
pathway that results in the production of insulin-like growth
factor-I [161]. Higher levels of TNF are generally related to
the severity of the response, but whether greater TNF pro-
duction causes more severe inflammation or whether more
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severe inflammation elicits increased TNF synthesis is un-
clear [55].

However, TNF is also important in limiting and termi-
nating inflammation, enhancement of the repair of the dam-
age, and angiogenesis. This is illustrated in TNF knockout
mice. When homozygous TNF gene knockout mice were
infected with the bacterium, Corynebacterium parvum,
there was little or no initial response but the mice went on
to develop a severe and fatal inflammatory reaction [91].
Heterozygous mice for the TNF gene were more susceptible
to endotoxin-induced shock and to certain infections while
normal mice developed an inflammatory response that re-
solved. Thus, TNF appears to have a dual role of being
pro-inflammatory in the early phase of a response to an
infection and an anti-inflammatory function in the later
phases of the response in order to limit the extent or dura-
tion of the inflammation and to promote repair [89,91].

Expression of TNF mRNA appears to be present at a low
levels or absent in the normal brain [see 152 for review]. In
the normal rat brain it has been detected in the hypothalmus,
hippocampus, cortex, cerebellum and brainstem, however
most studies using in situ hybridization methods could not
detect transcripts in the brains of mice or rats. The protein
also appears to be localized to the same brain regions and at
low or undetectable levels. In humans, TNF mRNA has
been detected in the basal ganglia, cortex, and deep and
sub-cortical white matter regions [156].

Because of its’ low levels of expression it has been
difficult to determine what its’ precise role is in the normal
brain. In vitro studies indicate it can suppress activity of
glucose-sensitive neurons of the hypothalmus, alter presyn-
aptic a2-adrenergic receptor responsiveness in the median
eminence, and modify ion channel permeability in rat hip-
pocampal neurons [152]. TNF is produced by neurons,
microglia, and astrocytes, although the latter two may be in
response to pathological stimuli [20]. In an inflammatory or
diseased state, TNF along with a variety of pro-inflamma-
tory mediators and neurotoxic substances are produced by
activated microglia [107]. TNF, IL-1, and IL-6 are the
primary cytokine mediators of inflammation that are pro-
duced by these cells and they tend to induce each other
[124]. TNF also activates NF-�B [98,109] which stimulates
the production of many substances, including survival fac-
tors such as manganese superoxide dismutase (MnSOD)
[107] and the transcription of other cytokines [151], includ-
ing TNF itself [144,145]. In astrocytes, TNF, along with
other substances, is a strong inducer of IL-6 [148].

Compared to other cytokine genes, TNF is highly poly-
morphic; this may be partly due to its’ location between the
highly variable class II and class I regions of the MHC or it
could also reflect environmental selection due to its impor-
tance in many biologic processes [55], including the critical
role in inflammation that is described above. The TNF gene
is located in the class III region of the MHC at chromosome
6p21.32, is 2,676 bp long and contains 4 exons and 3 introns
[70,89]. TNF is produced as a membrane-bound 26 kDa

precursor molecule and is cleaved by the enzyme TNF-�
converting enzyme (TACE) to produce a soluble 17 kDa active
form of TNF [12,103]. Two polymorphisms are located in
intron 1 and one polymorphism is located in intron 2, however
a total of 8 single nucleotide polymorphisms (SNPs) are lo-
cated in �1 kb of the 5� UTR and promoter region [70].

Some of the promoter SNPs appear to affect transcrip-
tional activation. Reporter gene constructs containing the A
allele of the –308 SNP appear to have higher transcriptional
activity than with the –308G allele [19,82,157,163] and
some in vitro studies have demonstrated higher levels of
TNF are released from cells with the –308A allele of TNF
[17,85]. Other groups do not report any differences in ac-
tivation between the two alleles [21,60,69,136]. These con-
flicting results appear to be the result of the use of different
transcription factors and cell lines; in addition various pro-
tocols and reporter constructs were used. One study reported
the TNF –308 polymorphism affected TNF transcription in
both a cell-type and stimulus-specific manner [81]. Al-
though there is binding of a transcription complex to this
region in all cell types, it is not the only factor governing
whether the promoter region containing the –308A allele
results in elevated expression in a given cell type since
additional cell-type specific nuclear factors binding to this
area are likely to be involved in expression.

One study has found an association between the G allele
of the TNF –238 polymorphism and higher TNF production
[69], but this was not demonstrated by a previous study
[119]. Methodological differences, such as isolated cells vs.
whole blood cultures, the amount of endotoxin used to
stimulate the cells and differences in study size, could ex-
plain these conflicting results. Another explanation could be
the presence of a third TNF promoter SNP located at –376.
One group reported the –376 SNP was aligned with the
binding site for the transcription factor OCT-1 and the
–376A allele was found to bind the OCT-1 protein while the
G allele did not [78]. The authors reported that the regions
located at –238 and –308 did not bind any protein. Since all
three polymorphisms are in linkage disequilibrium, the
–238 and –308 SNPs effect on expression of TNF may be
due solely to the functional –376 polymorphism or a func-
tional site elsewhere.

There is a cluster of five highly polymorphic microsat-
ellites (TNFa-e) surrounding the TNF gene [73,106,146]
that have also been associated with altered TNF production.
One In vitro study reported the TNFa2 and c2 alleles were
associated with higher TNF production while the TNFa6
and TNFc1 alleles were associated with lower TNF produc-
tion [120]. However, another study found the a2 and a6
alleles were associated with lower TNF synthesis than the
a4 and a11 alleles [37]. Different methodologies using dif-
ferent agents for stimulation may explain these results. The
TNFa2, b1, c1 alleles seem to be part of an HLA-DR4
extended haplotype DRB1*0401 with HLA-B62 that ap-
pears to be associated with high TNF production while
another HLA-DR4 extended haplotype, DRB*0401, TNFa6,
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b5, c1, HLA-B44 is usually associated with low TNF produc-
tion. This relationship between the microsatellites and TNF
production is probably due to linkage disequilibrium [55].

If the promoter polymorphisms and the microsatellites
lead to or are associated with increased TNF expression
levels, they could contribute to the course and/or severity of
diseases, especially those involving inflammation. Inflam-
matory conditions that have been reported to be have a
positive association with the –308A allele include coeliac
disease [35,97], primary sclerosing cholangitis [10], and
primary biliary cirrhosis [55]. Interestingly, the –308A al-
lele seems to be protective against ulcerative colitis [17]
while the –308G allele is a risk factor [55]. Additionally, the
TNF a2, b1, c2, d4, and e1 microsatellite alleles have been
found to be positively associated with ulcerative colitis
[118], although HLA haplotypes were not included.

A variety of infectious diseases of different etiologies
have been associated with the –308A allele. They include,
mucocutaneous leishmaniasis [24], trachoma [32], menin-
gococcal meningitis [105], leprosy [127], septic shock re-
sulting from bacterial infections [100], brucellosis [23], and
malaria [96,153]. The A allele of the -376 SNP has also
shown to be a risk factor for malaria, independent of the
–308A allele [78]. Altered TNF expression such as in-
creased or long-term exposure could cause more damage
and interfere with the appropriate response to an infectious
agent just as a reduction in TNF production could compro-
mise a full immune response. In the case of malaria, the
picture is further complicated by the fact that the aforemen-
tioned adhesion molecules on the vascular endothelium are
also receptors for Plasmodium falciparum so that an in-
crease in their expression, due to TNF activation, could
preferentially select for the parasite-binding phenotypes that
cause malaria [78].

Possible involvement of the SNP at –238 in Hepatitis B
and C has been reported [64,65]. Chronically affected indi-
viduals were more likely to have the –238A allele than those
who had eliminated the virus. The TNF genotype could
influence the initial response to viral infection, such as viral
neutralization and clearance, or it might affect the long-term
outcome of infection [55].

Although the –308A allele has been reported to be asso-
ciated to several autoimmune diseases or conditions [34,36,
46,63,120,125,138,158–160], most of these associations ap-
pear to be due to linkage disequilibrium with HLA
haplotypes. The same is true for the microsatellite associa-
tions with autoimmune diseases in that they seem to occur
as part of extended MHC haplotypes [55–58,102,104,120,
140] although the TNFa2 and c1 associations may be inde-
pendent of HLA genes [56,104].

2. TNF and Alzheimer disease

The above introduction lays the background as to how
TNF seems to play a role in various inflammatory and

infectious diseases. We will present results from our labo-
ratory that provide genetic evidence implicating a polymor-
phic haplotype of TNF in late onset Alzheimer disease
(AD). Initially, we reported that a chromosome 6 genome
screen detected a putative AD associated region near the
TNF gene at chromosome 6p21.3 [28,30,52], which has
been confirmed in other genomic scans [49,113]. The TNF
–308 and TNF –238 promoter region polymorphisms [150]
and the microsatellite polymorphism TNFa [89,92], located
approximately seven kilobases upstream of TNF, were
genotyped by our group in 145 late onset Caucasian families
[28]. The TNF haplotype 2(A)-1(G)-2(99 bp), respectively,
was significantly associated (p-value � 0.005) with AD
using the SDT program [66]. Two of the TNF alleles com-
prising this AD haplotype, TNF –308 2 and TNFa 2, have
been shown in some studies to be associated with increased
TNF production (see previous section). This could lead to
the chronic inflammatory state and free radical damage
hypothesized to be involved in AD pathogenesis [94,162].

In a case-control study, which included 111 African-
American’s with Alzheimer disease [114], we did not find
any association of the TNF –308 2 allele with AD. We did
show a significant increase in age of onset for patients
carrying the TNF –308 2 allele (mean age � 73.9) when
compared to patients with no 2 allele (mean age � 70.6,
p-value � 0.02). We also showed a significant increase in
age of onset for individuals with the TNFa 2 allele (99
basepairs) (mean age � 74.4) when compared to all others
(mean age � 70.1, p-value � 0.002). The haplotype con-
taining these two alleles along with the –238G allele
[2–1-2], as described above was not significantly associated
with AD in this study of African-American patients. How-
ever, there was a significant increase in mean age of onset
for patients carrying the 2–1-2 haplotype (mean age � 73.8)
when compared to all others (mean age � 70.7, p-value �
0.04).

Our results of the study of AD in African-Americans
[114] and our previous results in primarily Caucasian AD
patients [28] may reflect different modifying effects by the
TNF gene in different ethnic groups depending on its’
interaction with different succeptibility genes and/or risk
factors. Also, the family-based association test that was
used in the analyses of the families in the candidate gene set
identifies susceptibility alleles through identity by descent
(IBD) whereas, the analysis of the African-American case-
control set is based upon allele identification through iden-
tity by state (IBS) in a population. Thus, asssociations in the
candidate gene set can be attributed to other genes located
nearby that are in linkage disequilibrium with TNF. Some
studies have reported an association of the A2 allele of
HLA-A gene with an earlier age of onset in sporadic, early
onset, and late onset Caucasian AD patients [5,31,112),
however, we did not find any association of the HLA-A2
allele to AD nor any lowering of age of onset by A2 in AD
patients (primarily Caucasian) in our candidate gene set [28]
or in the African-American AD patients [114]. These ob-
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servations either indicate some modifying role for TNF in
the onset of AD or linkage disequilibrium with another
locus nearby.

In a recent study of another TNF promoter polymor-
phism, C-850T, the T allele was found to increase the risk
to AD patients when in the presence of an APOE e4 allele.
The odds ratio was 4.6 (95% CI 2.4–9.0) with an APOE e4
allele and those with an APOE e4 allele but no T allele had
an odds ratio of 2.7 (95% CI 1.7–4.4) [93]. These results
indicate that TNF expression may augment the effects of
ApoE.

3. TNF receptors

The biologic effects of TNF are mediated by binding to
its’ two main receptors, the p55 TNF receptor (TNFR1) and
the p75 TNF receptor (TNFR2). The TNFR1 gene is local-
ized to chromosome 12p13.31, contains 10 exons, and
codes for a 55/60 kDa membrane receptor [44,70,84]. The
TNFR2 gene is located at chromosome 1p36.22, contains 10
exons, and codes for a 75/80 kDa membrane receptor [70,
128,129,134]. Both receptors belong to a superfamily of
transmembrane receptors that are defined by a similar cys-
teine-rich extracellular domain, however, the intracellular
regions of TNFR1 and TNFR2 appear to be unrelated
[9,90]. Both TNFR1 and TNFR2 are shed from the cell
surface to soluble forms [61,79]. In fact, TNFR2 is cleaved
by the same enzyme, TACE, that cleaves TNF [55]. These
soluble receptors can neutralize the activity of TNF by
competing with the membrane-bound forms, however they
also stabilize TNF and prevent its degradation [1].

TNFR1 is constitutively expressed at low levels on all
nucleated cells, including neurons throughout the brain, and
appears to be involved in most TNF-mediated effects in
many different cell types [9,25,76,128]. It also signals for
fibroblast growth, endothelial cell activation/adhesion, and
anti-viral activity, and is the primary mediator of TNF-
induced cytotoxicity and apoptosis in non-lymphoid cells
[88,142]. Apoptosis and NF-�B activation is linked to an 80
amino acid stretch in the carboxy-intracellular region
known as the “death domain” [67].

TNFR2 has a higher affinity for TNF than TNFR1 and
binds TNF better at lower concentrations [55]. Although
TNFR2 is expressed primarily on cells of hematopoetic
origin, it is also expressed on many cell types including
neurons throughout the brain, [25,76,128]. It is responsible
for signaling pro-inflammatory responses including thymo-
cyte and peripheral T-cell proliferation and apoptosis and
participates in B-cell activation [9,45,142,143]. It also can
enhance TNFR1-mediated apoptosis [155].

Transgenic and knockout TNF receptor mice have pro-
vided further evidence of neurological and inflammatory
roles for TNF and these TNF receptors. Overexpression of
TNFR2 in transgenic mice resulted in a severe peri-vascular
inflammation involving the pancreas, liver, kidney, and

lung, accompanied by constitutively increased NF-�B ac-
tivity in the peripheral blood mononuclear cells [38].

In TNFR2 deficient mice, there was an increase in pul-
monary infiltrate after being exposed to heat-killed antigen
and increased induction of serum TNF by stimulation of
LPS, which suggested to the authors that TNFR2 may have
a regulatory role in suppressing inflammatory responses
mediated by TNFR1 in certain circumstances [115]. One
group knocked-out TNFR2 and TNFR1 in mice and double,
knockout mice were generated from crosses of the singly
deficient mice [22]. The TNFR-deficient mice showed no
overt phenotype, but damage to the neurons caused by a
focal cerebral ischemia and epileptic seizures were exacer-
bated, indicating that TNF serves a neuroprotective func-
tion. Also, oxidative stress was increased and levels of the
antioxidant enzyme, manganese superoxide dismutase (Mn-
SOD), were reduced in the brain cells, indicating that TNF
protects neurons by stimulating antioxidant pathways. Inju-
ry-induced microglial activation was suppressed in these
mice, demonstrating a key role for TNF in injury-induced
immune response. In another study by this group, levels of
MnSOD were also reduced along with delayed responses of
NF-�B activation in TNFR-KO mice after traumatic brain
injury compared with that of wild types expressing TNF
receptors [137]. A third study found neuronal damage after
focal cerebral ischemia-reperfusion was significantly in-
creased in TNFR1 knockout mice when compared to wild
type and TNFR2 deficient mice [50]. Also, the mice lacking
TNFR1 demonstrated increased degeneration of hippocam-
pal neurons after administration of the excitotoxin kainic
acid compared with wild-type and TNFR2 deficient mice.
These results suggest TNF plays a neuroprotective role after
acute brain insults.

4. TNF receptors and Alzheimer’s disease

One study reported that patients with dementia of Alz-
heimer type [DAT] were found to have more of both types
of receptors on T lymphocytes than controls [16]. This
could indicate a systemic immune activation in DAT pa-
tients as compared with healthy controls. A separate study
has investigated a polymorphism in another receptor in this
superfamily of receptors, TNFR6 which encodes FAS, a
cell-surface receptor involved in apoptosis initiation [42].
They found the promoter SNP in this gene along with
APOE4 was associated with early onset Alzheimer disease
in a group of Scottish patients. This could indicate the AD
risk contributed by APOE4 could be related to a pathway
involving apoptosis and this receptor family.

The chromosome area on 12p containing TNFR1 has
been linked to late-onset AD in a genomic screen of 54
families [113], and this finding has been followed up and
supported by other studies [75,123]. Only a few mutations
in TNFR1 from a small number of families have been
reported and they occur in the extracellular domain. The
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clinical symptoms include fever and severe localized in-
flammation [47]. There have been three SNPs identified in
the gene. One is located in exon 1 at codon 12 (36A 224 G)
that does not result in a coding change [117] and two
additional SNPs are located in introns 5 and 7 [7]. A highly
polymorphic dinucleotide repeat has also been observed in
TNFR1 [40].

To investigate whether or not the TNFR1 gene is asso-
ciated with late onset AD, we used family-based association
testing [83] to look at the exon 1 polymorphism in 150
families with at least two affected and one unaffected sib-
lings. There was no significant association of this polymor-
phism to AD under an additive model (Z score � 2.28,
p-value � 0.022). In order to increase our informativeness,
we also typed the two other SNPs in intron 5 (C3T) and
intron 7 (G3A) [7] but found no significant associations.

We have also previously reported the chromosome 1p
region containing the TNFR2 gene as also being linked to
AD in set of 145 families with at least two siblings with an
age of onset of over seventy years; these families were part
of the total National Institute of Mental Health (NIMH)
sibling dataset of 266 sib-pair families [29]. We have con-
firmed the suggestion of linkage to the same 1p terminal
region in an expanded set of the 320 late onset families.
Using GENEHUNTER we obtained Z scores of 1.98 (p-
value � 0.024) to 1.99 (p-value � 0.023) between 18 and
21 cM from the p terminal end of chromosome 1. SIBPAL
analyses for marker D1S1597 located at 30 cM from the p
terminal end gave a mean IBD of 0.52 (p-value � 0.0329).
We obtained even more significant findings for a subset of
125 families that were homozygous for APOE4. GENE-
HUNTER scores were 3.29 (p-value � 0.001) to 1.99 (p-
value � 0.023) covering a distance of 21 cM from the p
terminal end of chromosome 1. These were supported by
SIBPAL analyses: D1S2845 (mean IBD � 0.58, p-value �
0.001), D1S1612 (0.56, 0.005), and D1S1597 (0.56, �
0.001) located at 9, 16, and 30 cM respectively.

As in TNFR1, we wanted to follow up these linkage
results with family-based association testing. In addition to
microsatellites located in TNFR2 [9,128], many polymor-
phisms have been identified in the gene, but some of these
are rare [70,110,128]. Exon 6 codes a portion of the trans-
membrane region and is a cleavage site for soluble TNFR2.
A polymorphism located in exon 6 (676 T 224 G) leads to
a 196 M 224 R substitution. This polymorphism has been
associated with SLE in Japanese populations [80], but is not
associated with SLE in Caucasian (United Kingdom) or
Spanish populations [2].

We typed this polymorphism in the same candidate gene
set as TNFR1. The TNFR2 exon 6 T 224 G polymorphism
did not have significantly different genotype frequencies
when compared to affected and unaffected siblings. How-
ever, we found a significant association of this polymor-
phism with AD in families with no individuals possessing
the APOE E4E4 genotype under a dominant model using
family-based association testing (Z score � �2.21, p-value �

0.027) [81]. Mean ages of onset were not significantly
different when comparing patients with different genotypes.

5. Discussion

The role of TNF and inflammation in AD has been much
discussed and debated [see 106 for review]. There is a lack
of immune cell mediation in the brain and there are none of
the classic features of inflammation such as edema, swell-
ing, and vascular proliferation. However, the upregulation
of many inflammatory mediators including the complement
proteins, the primary proinflammatory cytokines mentioned
above, and other acute phase proteins have been demon-
strated in the AD brain. These mediators co-localize to AD
affected areas of the brain with particularly high expression
near the pathological features that are found in the AD
brain, neuritic plaques and neurofibrillary tangles (NFTs);
however they are absent or minimal in unaffected regions of
the AD brain. These inflammatory mediators could cause
neuronal damage by overstimulating the immune system
[71,95,141], which is supported by the fact that induced
brain inflammation in rats causes neurodegeneration and
memory loss [59]. In fact, inflammation may be one of the
final common pathway through which neuritic plaques and
NFTs manifest their neurodegenerative defects. This is the
conclusion reached by the authors of one study who com-
pared the brains of patients with no history of dementia, but
demonstrating a neuropathology indicative of an AD diag-
nosis to AD patients and non-demented controls and found
inflammatory markers and changes were the best predictor
of synaptic changes [86].

The three genes demonstrating autosomal dominant
transmission which have been found to cause AD in pri-
marily early-onset families may also be involved in this
inflammatory model, since amyloid precursor protein
(APP), presenilin 1, and presenilin 2, are proposed to cause
AD by increasing the production of amyloid � (A�) 42
[27,130,132]. A� upregulates and activates astrocytes and
microglia [107]; these could act like inflammatory cells
since they release a myriad of proinflammatory cytokines,
including TNF, IL-1, and IL-6 [43,54,77]. In addition, mi-
croglia produce cytotoxic and neurotoxic free oxygen rad-
icals [131]. A�42 is oxidized in the presence of free radicals
[39,165] and aggregates [72] to form neurotoxic AD neu-
ritic plaques [164]. This leads to overstimulation of the
immune system [8,74]. A� also increases the production of
nitric oxide (NO) in the presense of cytokines, which can
also lead to neuronal damage [126,133].

The other AD gene, apolipoprotein E (APOE) �4 allele,
especially in its homozygous form, is a major risk factor for
late-onset AD [41,135,139] and may act by lowering the age
at onset of AD [14,33,99]. The APO �4 allele has also been
shown to have the least antioxidant activity of the three
common alleles [101]. APOE is synthesized and secreted by
microglia and astrocytes in the CNS [18]. APOE contains
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NF-�B-like consensus sequences, therefore the activation of
NF-�B through microglial upregulation by A�, cytokines
such as TNF, or neuronal injury would increase the expres-
sion and release of APOE [3]. Since APOE has been shown
to be important for neuritic plaque formation in transgenic
mice [4], upregulation of APOE expression could accelerate
A� deposition and the formation of neurotoxic neuritic
plaques resulting in further overstimulation of the immune
system [8,74].

TNF increases the production of A� and inhibits the
secretion of neuroprotective, soluble amyloid precursor pro-
teins (sAPPs) [15]. TNF, which is released by microglia
[62,77], activates NF-�B, [98,109] which in turn stimulates
the transciption of more TNF [144,145], other cytokines
[151], and APOE and its release [3]. This upregulation of
both A� and APOE by TNF would then lead to increased
neuritic plaque formation. TNF has also been shown to
upregulate cyclo-oxygenase 2 (COX2) expression [51],
which would increase the level of free radicals [116]. COX2
expression has been found to be higher in Alzheimer pa-
tients [111], especially within neurofibrillary tangles [108].

A deletion in the �-2-macroglobulin (A2M) gene has
been implicated in late-onset AD [13] and it may also be
involved with TNF. A2M is an acute phase protein and AD
plaque component [122,147] that binds to A� [68] and
degrades it [121]. Additionally, A2M binds TNF [154] and
A2M may be regulated by the release of NF-�B [3], TNF,
and other cytokines [87]. Thus, one hypothesis is the dele-
tion in A2M could potentially affect A� and TNF binding
sites, leading to less degradation, additional plaque forma-
tion, and immune overstimulation. However, functional
studies of the A2M deletion and its effect upon binding A�
and TNF would be needed to confirm this hypothesis.

6. Conclusion

TNF plays a pivotal role in the general inflammatory
response throughout the body. It is not only involved in the
activation of other inflammatory cytokines and the sur-
rounding events during the initial immune response, it is
also important in limiting and terminating inflammation to
prevent further tissue damage. It is not clear what its role is
in the normal brain, but it is clearly upregulated when
damage to neuronal cells has occurred. In AD it is also
upregulated in and involved with molecules associated with
AD, including A�, ApoE, and A2M. There is a growing
amount of evidence that inflammation is involved in the
pathogenesis of AD and TNF may play a role in this pro-
cess. Several polymorphisms in the promoter of the TNF
gene have been found to increase TNF expression and have
been associated with various inflammatory and infectious
diseases.

We previously reported results of linkage studies that
detected a putative AD associated region near the TNF gene
at chromosome 6p21.3. We also reported an association

using family-based association testing between a haplotype
of two TNF promoter polymorphisms and the microsatellite
TNFa and AD in the NIMH sibling data set. Furthermore,
we found a significant increase in mean age of onset for a
group of African-American AD patients carrying this hap-
lotype.

The chromosome 1p terminal region was found to be
associated with AD in the same NIMH sibling data set.
Other linkage studies have indicated the chromosome 12p
region is linked to late-onset AD. These two regions harbor
TNF receptors which mediate the biologic effects of TNF.
In this paper, we confirmed previous linkage results for this
chromosome 1p region in an expanded AD sibling data set.
Using family-based association testing, we also found a
significant association between a TNFR2 exon 6 polymor-
phism and late-onset AD and in families with no individuals
possessing the APOE E4E4 genotype under a dominant
model. We did not find an association for three polymor-
phisms located in the TNFR1 gene to AD. This involvement
and association with TNF, TNFR1, and TNFR2 in late-
onset AD provides further evidence for the involvement of
TNF and inflammation in the pathogenesis of AD.
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