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Common genetic disorders are believed to arise from

the combined effects of multiple inherited genetic vari-

ants acting in concert with environmental factors, such

that any given DNA sequence variant may have only a

marginal effect on disease outcome. As a consequence,

the correlation between disease status and any given

DNA marker allele in a genomewide linkage study

tends to be relatively weak and the implicated regions

typically encompass hundreds of positional candidate

genes. Therefore, new strategies are needed to parse

relatively large sets of ‘positional’ candidate genes in

search of actual disease-related gene variants. Here we

use biological databases to identify 383 positional candi-

date genes predicted by genomewide genetic linkage

analysis of a large set of families, each with two or

more members diagnosed with autism, or autism spec-

trum disorder (ASD). Next, we seek to identify a subset

of biologically meaningful, high priority candidates. The

strategy is to select autism candidate genes based on

prior genetic evidence from the allelic association litera-

ture to query the known transcripts within the 1-LOD

(logarithm of the odds) support interval for each region.

We use recently developed bioinformatic programs that

automatically search the biological literature to predict

pathways of interacting genes (PATHWAYASSIST and GENE-

WAYS). To identify gene regulatory networks, we search

for coexpression between candidate genes and posi-

tional candidates. The studies are intended both to

inform studies of autism, and to illustrate and explore

the increasing potential of bioinformatic approaches as

a compliment to linkage analysis.
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Autism is a pervasive neurodevelopmental disorder that

severely impairs development of normal social and emotional

interactions and related forms of communication. Disease

symptoms characteristically include unusually restricted and

stereotyped patterns of behaviors and interests. Autism

describes the most severe manifestation of a broad spec-

trum of disorders, known as autism spectrum disorders

(ASD) that share these essential features, but vary in their

degree of severity and/or age of onset. While it is difficult

to accurately estimate the prevalence of ASD, due to an

apparent increase over the past few decades (Chakrabarti

& Fombonne 2001; Gillberg & Wing 1999; Prior 2003), recent

studies suggest that ASD affects 34–60 individuals per

10 000 (Charman 2002; Fombonne 2003; Yeargin-Allsopp

et al. 2003).

Twin and epidemiological studies show that autism is a

highly heritable disorder. When one monozygotic (MZ) twin

is diagnosed with autism or ASD, the disease concordance is

70–90%, compared to 0–25% concordance among same-

sex dizygotic twins (Bailey et al. 1995; Folstein & Rutter

1977; Lauritsen & Ewald 2001; Rutter 2000). The estimated

heritability of ASD is believed to be approximately 90%,

which is extremely high relative to other complex genetic

diseases (Hyttinen et al. 2003; Ju et al. 2000). The impact of

genetic determinants on disease liability is further substan-

tiated by comparing the disease risk for a sibling of a proband

diagnosed with ASD (2–6%) with the population prevalence

of ASD (0.04–0.1%) (Smalley 1997; Smalley et al. 1988;

Szatmari et al. 1998), yielding a relative risk of 50–100 for

ASD (Lamb et al. 2000).The rate by which autism and ASD

incidence drops among first, second and third degree rela-

tives provides another indication that disease susceptibility

arises from the combined effects of multiple, possibly inter-

acting, genes (Lamb et al. 2000; Rutter 2000). Therefore,

even though autism is clearly among the most heritable of
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all psychiatric disorders, the likely interaction of multiple

genes that increase susceptibility to autism, rather than

directly cause it, presents formidable challenges for genetic

studies.

The search for genetic linkage between DNA markers

spanning the entire genome and single-gene disorders with

clear Mendelian patterns of inheritance has been enormously

successful, in many cases leading to the identification of

disease genes and their causal mutations despite years of

failure using non-genetic, hypothesis-driven approaches

(Botstein & Risch 2003). The success of such studies

depends upon the identification of clear recombinant break-

points that define the boundaries of the disease locus, and

typically demarcate a minimal genetic region that harbors the

disease gene along with dozens of non-disease related, pos-

itional candidate genes (Riordan et al. 1989; Rommens et al.

1989). Whereas ‘single-gene’ disorders are typically quite

rare, common heritable disorders are believed to arise from

the combined effects of multiple predisposing gene variants,

presumably in combination with environmental factors. Con-

sequently, the influence of any single gene-variant upon dis-

ease status is likely to be small, and therefore difficult to

detect using genetic linkage strategies. Moreover, the popula-

tion prevalence of gene variants with small or negligible

individual effects upon reproductive fitness will follow the

same stochastic course as neutral polymorphisms, in some

instances reaching significant frequencies. This explains in

part how heritable disorders with multiple gene etiologies

become common, and also why they are elusive gene map-

ping targets, i.e., it becomes difficult to detect enhanced

sharing of disease-related alleles among affected individuals

when the same gene variant is prevalent among control

individuals. For these reasons and others (Altmuller et al.

2001; Lander & Kruglyak 1995; Lander & Schork 1994;

Weiss & Terwilliger 2000), evidence for linkage between a

common heritable disorder and DNA marker alleles tends to

be weak and difficult to distinguish from the type of random

statistical fluctuations that inevitably accompany a full gen-

ome scan. Consequently, a conservative survey of positional

candidate genes based upon whole genome scan analysis

typically requires the analysis of positional candidate genes

within multiple, broad linkage peaks, often spanning 10–40

million base pairs, and comprising upwards of 50–100 genes.

Consistent with these rather dire predictions, we recently

completed the largest whole genome linkage scan of ASD

reported to date, and found no statistically significant evi-

dence for linkage between DNA marker alleles and disease

status (Yonan et al. in press). We did, however, detect ‘sug-

gestive’ evidence for ASD predisposing loci on chromo-

somes 17, 5, 11, 4 and 8. Such moderate linkage signals

may reflect the marginal contribution to disease risk arising

from a given genetic locus, or alternatively, false positive

findings that reflect random statistical fluctuation. While

independent replication is the standard to distinguish

between the two possibilities, the criteria required to declare

replication are model and disease dependent, and thus

necessarily vague, and at least in theory, replication of a

specific linkage finding is many times more complex than

detection of any one among several predisposing genetic loci

(Lander & Kruglyak 1995).

For reasons outlined above, whole genome linkage analy-

sis of common heritable disorders identifies a large and

unmanageable number of positional candidate genes, the

vast majority of which are unrelated to the disease target.

We propose the use of genomic data-mining strategies to

parse these relatively large candidate gene sets with the

purpose of identifying a subset of biologically meaningful

genes that map to predetermined genetic loci. To illustrate

this approach, we have surveyed the top five ASD-linked

regions in a recent genomewide linkage study (Yonan et al.

in press). The strategy is to predict a subset of likely candi-

date genes mapping to each putative linkage peak. Such

candidates would then become the focus of further genetic

and biological testing.

There is substantial interest in using bioinformatic

resources in conjunction with linkage methodologies to

identify the most promising candidate loci within large and

sometimes unconfirmed linkage regions, so that they may

be examined further (Baron 2002). We chose to use posi-

tively associated genes to query known transcripts within

peak linkage regions using several complimentary bioinform-

atic methods. We examined several different bioinform-

atic approaches in order to identify convergent evidence

for specific candidate genes, as well as to explore the

future potential and current limitations of these approaches.

Materials and methods

Characterization of putative ASD-linked
chromosomal regions

The chromosomal regions examined in this study are shown

in Fig. 1. Beginning with 345 families that had two or more

siblings diagnosed with either autism or ASD, we used

affected sib pair analysis to identify genomewide linkage to

ASD (Yonan et al. in press). Five chromosomal regions from

the genome scan met a cutoff of a pointwise P-value of

< 0.01, which we interpreted as being ‘moderately sugges-

tive’. Here we examine the chromosomal regions defined by

the 1-LOD support interval of the 5 most significant peaks.

Details of the analysis that lead to the identification of these

regions have been described previously (Liu et al. 2001;

Yonan et al. in press).

Association and linkage tables

We performed a search for allelic association between

candidate gene allelic variants and autism or ASD using

the PubMed database (http://www.ncbi.nlm.nih.gov/). This

Yonan et al.
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search strategy was augmented by personal knowledge

of the literature and by references from key publications

(Table 1). A similar strategy was used to compile the list

of genomewide linkage studies for autism and ASD

(Table 2).

Manual search strategy

We compiled a comprehensive list of genes (known and

predicted from transcripts) in our five most significant

regions using the Celera Discovery System (http://www.

celeradiscoverysystem.com) and the NCBI Human Genome

Project (UCSC Genome Browser; http://genome.ucsc.edu/

version 24 (hg15) April 2003 Freeze) databases. This exhaust-

ive gene list was created by performing database queries

against the UCSC Human Genome Browser’s annotation

database. The table definitions and data of two MySQL

(http://www.mysql.com) tables, refGene and refLink, were

downloaded from the public FTP site at UCSC (ftp://genome.

ucsc.edu/goldenPath/10april 2003/database/) and recreated

locally. Genes that mapped to the corresponding intervals

in the Celera map were downloaded manually. All genes

located within the physical boundaries defined by the 1-

LOD unit support intervals on each chromosome were then

extracted; the complete list of these 383 genes is available

as supplementary material accompanying this paper (see

Supplementary material section). This list was then further

evaluated using several online databases. The Celera data-

base annotates category and family for each gene using the

Panther Protein Function. The Human Genome Project pro-

vides a gene ‘index’, a set of links to multiple annotation

databases, for each Ref Seq transcript, including to the

Online Mendelian Inheritance of Man (OMIM), Locus Link,

PubMed, Gene Lynx, Gene Cards and Ace View databases.

A short list of ‘neural-related’ genes was identified based

upon evidence of their involvement in neuronal development/

control, neurotransmitter function, transcription regulation and

similar functions that made them logical disease-related candi-

dates for the autism spectrum disorders.

Gene ontology methods

Gene Ontology (GO) is a controlled vocabulary designed to

describe key aspects of the molecular function, biological pro-

cess and cellular component of gene products (Bard 2003).

Using the complete list of all 383 positional candidate genes

(see above) we screened genes for neural-related GO terms in
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Figure 1: The 1-LOD interval of the five most significant

multipoint Maximum Likelihood Score (MLS) regions from

genomewide Affected Sib Pair analysis to ASD (Yonan et al.
in press). The x-axis depicts genetic distance in Kosambi

centimorgans from pter (zero coordinate) to qter; the y-axis

represents MLS. The thick line and shading of the peaks demark

the 1-LOD interval that defined each region. The size of the 1-

LOD intervals are shown in Kosambi centimorgans. The physical

distance, as well as the number of transcripts, was taken from

the Human Genome Browser for each region, as described in

Materials and methods.

Table 1: Summary of association studies for autism

Gene

name

Physical

location

Association

found

Phenotype Study Size

and design

Reference Overlapping

linkage-MLS*

scores

Linkage

reference(s)

DRD5 4p16 No Autistic disorder 38 families,

TDT†

Philippe

et al. (2002)

1.55 IMGSAC

(1998)

DRD2 4q15 No Autistic disorder 38 families,

TDT

Philippe

et al. (2002)

HLA 6p21 No Autistic disorder 20 patients

vs. 709 controls

Stubbs

et al. (1980)

HLA-DR 6p21 Yes Autistic disorder 50 patients Warren

beta 1 vs. 79 controls et al. (1996)

GluR6 6q21 Yes Autistic disorder 107 trios, TDT

and 51 families,

Jamain et al. (2002)

Autism candidate gene search
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HOXA1 7p15 No Autistic spectrum

disorder (ASD)

ASP

case (n¼ 35) vs.

control (n¼35)

Talebizadeh

et al. (2002)

DLX6 7q21-q22 No Autistic disorder 196 families,

TDT

Nabi et al.

(2003)

2.2; 3.2 CLSA

(1999);

IMGSAC (2001a)

PCLO 7q21-q22 No Autistic disorder 196 families,

TDT

Nabi et al.

(2003)

2.2; 3.2 CLSA

(1999);

IMGSAC (2001a)

PAI-1 7q22 No Autistic disorder 167 trios,

linkage and

association

Persico

et al. (2001)

3.2 IMGSAC

(2001a)

RELN 7q22 Yes ASD – with

delayed phrase

speech

126 families Zhang

et al. (2002)

3.2 IMGSAC

(2001a)

RELN 7q23 No Autistic disorder 167 families,

TDT

Krebs

et al. (2002)

FOXP2 7q31 No to FOXP2

gene; yes to

region

Specific language

impairment (SLI)

96 families,

linkage and

association

O’Brien

et al. (2003

GRM8 7q31 Yes Autistic disorder 196 families, Serajee

(haplotype) TDT et al. (2003)

WNT2 7q31–33 Yes Autistic with severe

language abnormality

50 families Wassink

et al. (2001)

2.55–3.55 IMGSAC

(1998)

WNT2 7q31–33 No Autistic or language

abnormality

135 singleton

and 82 multiplex

families

McCoy

et al. (2002)

2.55–3.55 IMGSAC

(1998)

COPG2 7q32 No Autistic disorder 169 families,

TDT

Bonora

et al. (2002)

2.55–3.55 IMGSAC

(1998)

CPA1 7q32 No Autistic disorder 169 families,

TDT

Bonora

et al. (2002)

2.55–3.55 IMGSAC

(1998)

CPA5 7q32 No Autistic disorder 169 families,

TDT

Bonora

et al. (2002)

2.55–3.55 IMGSAC

(1998)

D7S1804 7q32 Yes Autistic spectrum

disorder

170 multiplex

families, TDT

with 76 markers

IMGSAC

(2001b)

2.55–3.55 IMGSAC

(1998)

PEG1 7q32 No Autistic disorder 169 families, Bonora 2.55–3.55 IMGSAC

/MEST TDT et al. (2002) (1998)

D7S2533 7q33 Yes Autistic spectrum

disorder

170 multiplex

families, TDT

with 76 markers

IMGSAC

(2001b)

EN2 7q36 No Autistic spectrum

disorder

204 AGRE

families, TDT

Zhong

et al. (2003)

3.66 Auranen et al.

(2002)

PENK 8q11-q12 No Autistic disorder 38 families, TDT Philippe

et al. (2002)

BDNF 11p13 No Autistic disorder 38 families, TDT Philippe

et al. (2002)

HRAS 11p15 Yes Autistic disorder case (n¼55)

vs. control

(n¼ 55)

Herault

et al. (1995)

TH 11p15 No Autistic disorder 38 families, TDT Philippe

et al. (2002)

NCAM 11q22 No Autistic disorder 38 families, TDT Philippe

et al. (2002)

AVPR1A 12q14 Borderline

significance

Autistic disorder 115 trios,

MTDT§

Kim et al.

(2002c)

Yonan et al.
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GABRA5 15q11-q13 No Autistic disorder 226 families,

PDT¶

Menold et al.

(2001)

GABRB3 15q11-q13 Yes Autistic disorder 80 families,

TDT

Buxbaum et al.

(2002)

GABRB3 15q11-q13 No Autistic disorder 226 families, PDT Menold et al.(2001)

GABRG3 15q11-q13 Yes Autistic disorder 226 families,

PDT

Menold et al.

(2001)

ATP10C 15q11-q13 No Autistic disorder 115 trios,

TDT

Kim et al.

(2002b)

UBE3A 15q11–q13 Yes Autistic disorder 94 multiplex

families, LD‡

Nurmi et al.

(2001)

NF1 17q11 No Autistic disorder 204 patients vs.

200 controls

Plank

et al. (2001)

2.34, 2.83 IMGSAC (2001a),

Yonan et al. (2003)

OMGP 17q11 Yes Autistic disorder

(DQ**>30)

case (n¼ 37) vs.

control (n¼
101)

Vourc’h

et al. (2003)

2.34, 2.83 IMGSAC (2001a),

Yonan et al. (2003)

BLMH 17q11 Yes Autistic disorder 81 trios, TDT Kim

et al. (2002a)

2.34, 2.83 IMGSAC (2001a),

Yonan et al. (2003)

5-HTT 17q11 Yes Autistic disorder 81 trios, TDT Kim 2.34, 2.83 IMGSAC (2001a),

/SLC6A4 et al. (2002a) Yonan et al. (2003)

5-HTT 17q11 No Hyperserotoninemia 134 autistic Persico 2.34, 2.83 IMGSAC (2001a)

/SLC6A4 in autistic patients patients vs. 291

1st degree

relatives

et al. (2002) Yonan et al. (2003)

5-HTT 17q11 No 5-HT blood levels 96 families, TDT Betancur 2.34, 2.83 IMGSAC (2001a),

/SLC6A4 et al. (2002) Yonan et al. (2003)

5-HTT 17q11 No Autistic disorder 98 trios, TDT Persico 2.34, 2.83 IMGSAC (2001a),

/SLC6A4 et al. (2000a) Yonan et al. (2003)

HOXB1 17q21 No Autistic spectrum

disorder

case (n¼ 35) vs.

control (n¼35)

Talebizadeh

et al. (2002)

PCSK2 20p11 No Autistic disorder 38 families, TDT Philippe

et al. (2002)

PDYN 20p12 No Autistic disorder 38 families, TDT Philippe

et al. (2002)

ADA 20q13 Yes Autistic disorder 118 patients vs.

126 controls

Bottini

et al. (2001)

ADA 20q13 No Autistic disorder 91 families, 44

trios, TDT and 91

patients vs. 152

controls

Persico

et al. (2000b)

MAO A Xp11 No Autistic disorder 38 families, TDT Philippe

et al. (2002)

MAO B Xp11 No Autistic disorder 38 families, TDT Philippe

et al. (2002)

GRPR Xp22 No Rett syndrome case (n¼ 25) vs.

control (n¼100)

Heidary

et al. (1998)

HOPA Xq13 No Autistic disorder 155 patients vs.

157 controls

Beyer

et al. (2002)

DXS287 Xq23 Yes Infantile autism case control Petit et al. (1996)

FMR-1 Xq27 No Autistic disorder 123 families Klauck et al. (1997)

Table summarizes current positive and negative association studies for specific genes and autism disorder or related

phenotypes. Positive allelic associations are shown in bold type. Also shown are any whole genome linkage peaks that overlap with a gene

tested for association, and their linkage scores.

*MLS ¼ Multipoint LOD score; †TDT ¼ Transmission Disequilibrium Test; ‡LD ¼ Linkage Disequilibrium; ¶PDT ¼ Pedigree Disequilibrium Test;
§MTDT ¼ Multiallelic TDT; **DQ¼Development Quotient

Autism candidate gene search
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an effort to identify likely candidates for ASD. Screeningwas per-

formed with the program PATHWAYASSIST (version 1.1, Stratagene

Corp, La Jolla, CA) and the FatiGOwebsite (http://fatigo.bioinfo.-

cnio.es/).

PATHWAYASSIST and ResNet database

The PATHWAYASSIST software (Ariadne Genomics, Rockville,

MD) allows the user to explore gene interaction networks

represented in the ResNet (tm) database. ResNet (tm) is a

comprehensive database of molecular networks compiled by

proprietary natural language processing techniques applied

to the whole PubMed database. The database contains more

than 100 000 events of regulation, interaction and modifica-

tion between 15000 proteins, cell processes and small mol-

ecules. The architecture of ResNet and PATHWAYASSIST has been

described (http://www.ariadnegenomics.com). PATHWAYASSIST

provides a ‘front end’ that allows the user to query the

database, and to direct the construction of specific networks

relative to genes of interest.

The complete list of all 383 positional candidate genes was

loaded into PATHWAYASSIST. Of those genes, 203 were recog-

nized by the software, and were thus subjected to subse-

quent analysis. The ‘Expand Pathway’ feature of

PATHWAYASSIST was used to build a network of connections

starting with these 203 genes and including all available

categories of interaction. This expanded list was then

searched to find genes that interacted with neural-related

positional candidate genes in the following manner. The

genes in the expanded set that had interesting GO terms

were identified, and then their interacting ‘neighbors’ were

selected using the ‘Select Neighbors’ command. Set oper-

ations were used to reduce the list to only those genes that

were among the original list of 203 positional candidate

genes. Nine genes not found in the manual search described

above were identified in this manner for further evaluation.

Of these, four appeared to be logical candidates, and to have

been correctly identified by PATHWAYASSIST as having valid

interactions (Method 4, in Table 3) after manual inspection.

Table 2: Summary of genomewide linkage studies for autism

Top regions Peak position* Physical location† LOD score‡ References n (families)

1p13 149 cM 113Mb 2.15 Risch et al. (1999) 90

1q23 164 cM 154Mb 2.63 Auranen et al. (2002) 38

2p12 96 cM 76Mb 1.60 IMGSAC (2001a) 83þ 69¶

2q31 181 cM 175Mb 3.74 IMGSAC (2001a) 83þ 69¶

2q31 186 cM 183Mb 2.39–3.32 (Z) Buxbaum et al.

(2001), PSD§

49

3p25 36 cM 11Mb 1.51 Shao et al. (2002) 99

3q26 191 cM 180Mb 4.81 Auranen (2002) 38

4p16 4.6 cM 3.5Mb 1.55 IMGSAC (1998) 99

4q21 94 cM 85Mb 1.72 Yonan et al. (in press) 345

5p13 58 cM 40Mb 2.54 Yonan et al. (in press) 345

6q13 83 cM 70Mb 2.23 Philippe et al. (1999) 51

7q21 104 cM 91Mb 2.20 CLSA (1999) 75

7q22 112 cM 100Mb 3.20 IMGSAC (2001a) 83þ 69¶

7q32 142 cM 128Mb 2.55–3.55 IMGSAC (1998) 99

7q36 170 cM 153Mb 3.66 Auranen (2002) 38

8q24 132 cM 125Mb 1.50 Yonan et al. (in press) 345

11p13 46 cM 34Mb 2.24 Yonan et al. (in press) 345

13q12 21 cM 30Mb 2.30 CLSA (1999) 75

13q22 55 cM 73Mb 3.40 CLSA (1999) 75

16p13 19 cM 10Mb 1.51–1.97 IMGSAC (1998) 99

16p13 25 cM 12Mb 2.93 IMGSAC (2001a) 83þ 69¶

17q11 50 cM 28Mb 2.34 IMGSAC (2001a) 83þ 69¶

17q11 52 cM 29Mb 2.83 Yonan et al. (in press) 345

Xq21 63 cM 94Mb 2.54 Shao (2002) 99

Table summarizes genomewide linkage studies for autism or ASD, organized by chromosomal position and showing sample size used. Only the linkage

regions with anMLS>1.4 are shown for consistency of comparison. Linkage regions from Yonan et al. (in press), that the current study is based upon,

are shown in bold. Liu et al. (2001) is not shown since the complete sample (110 families) is included and reanalyzed in Yonan et al. (in press).

*Peak position ¼ position of the highest point/marker in Kosambi centimorgans from pter ¼ 0.

†Physical location ¼ position of the highest point/marker as mapped onto the Human Genome Browser.
‡LOD score ¼ usually MLS score, however, Z demarks an NPL Z score.
¶83þ 69¼ 89 families were used in the initial genomewide scan and then 69 families were added to follow up in 13 candidate regions.

§PSD=Phrase Speech Delay

Yonan et al.
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PATHWAYASSIST was also used to search for pathway rela-

tionships beginning with the 13 genes that have been

reported to be positively associated with autism in at

least one previous study (Table 1). The PATHWAYASSIST ‘Build

Pathway’ function was used to search for pathways begin-

ning with these genes. Next, the pathway was expanded

to examine the connections to any of the positional candi-

date genes of the current study. As before, 203 of the

positional candidates were recognized by the program

and used in this analysis, only a few of which showed

connections to this pathway (Method 5 in Table 3). Inter-

actions among the 203 positional candidates were excluded

from the analysis, as these interactions were unrelated to

our hypothesis.

GENEWAYS pathway prediction system

GENEWAYS is a program that uses a natural language proces-

sing algorithm to extract relationships between molecules or

molecular processes by digesting published research litera-

ture and building these relationships into pathways (Rzhetsky

et al. 2000). Electronic copies of the full text of research

articles are downloaded to a local database where biologic-

ally important concepts such as names of genes, proteins,

processes, small molecules and diseases are extracted from

the text (Krauthammer et al. 2000) and clarified in relation to

the many synonyms and homonyms and other ambiguities

that are often applied to an identical term (Hatzivassiloglou

et al. 2001). An associated program, GENIES is a natural lan-

guage processing parser (Friedman et al. 2001). The output

Table 3: Semi-automated search for candidate genes

Gene name Full name Chromosome Method

ACCN1 Neuronal amiloride-sensitive cation channel 1 17q 1, 2

BLMH Bleomycin hydrolase 17q 1, 3

CENTA2 Centaurin-alpha 2 protein 17q 1, 2

GIT1 G protein-coupled receptor kinase-interactor 1 17q 1, 2, 6

NF1 Neurofibromin 17q 1, 6

OMG Oligodendrocyte myelin glycoprotein 17q 1, 3

SLC6A4 Solute carrier family 6 (serontonin transporter) 17q 1, 2, 3, 5, 6

TIAF1 TGFB1-induced antiapoptotic factor 1 isoform 1 17q 2

TNFAIP1 Tumor necrosis factor, alpha-induced protein 1 17q 2

TRAF4 TNF receptor-associated factor 4 isoform 1 17q 2

CARD6 Caspase recruitment domain family, member 6 5p 2

CCL28 Small inducible cytokine A28 precursor 5p 2

GDNF Glial cell derived neurotrophic factor 5p 1, 2, 5, 6

GHR Growth hormone receptor 5p 1, 6

IL6ST Interleukin 6 signal transducer 5p 4

IL7R Interleukin 7 receptor precursor 5p 1, 2

ITGA2 Integrin alpha 2 precursor 5p 2

LIFR Leukemia inhibitory factor receptor 5p 4, 6

FYB FYN binding protein 5p 6

PRLR Prolactin receptor 5p 1, 2

Nup155 Nucleoporin 155 kDa 5p 1

SLC1A3 Solute carrier family 1, member 3 (glutamate transporter) 5p 1, 2

DAB2 Disabled homolog 2, mitogen-responsive phosphoprotein 5p 5

API5 Apoptosis inhibitor 5 11p 1, 2

CAT Catalase 11p 1, 2

CHRM4 Cholinergic receptor, muscarinic 4 11p 2

ELF5 E74-like factor 5 (ets domain transcription) 11p 1, 2

MC7 Transcription factor in neuroblasts and developing neurons 11p 1

MDK Midkine (neurite growth-promoting factor 2) 11p 2

MAPK8IP1 Mitogen-activated protein kinase 8 interacting protein 1 11p 5

CD44 CD44 antigen 11p 6

SLC1A2 Solute carrier family 1, member 2 (glutamate transporter) 11p 1, 2

TRAF6 TNF receptor-associated factor 6 11p 1, 2, 6

ATOH1 Atonal homolog 1 4q 1, 2

BIKE BMP-2 inducible kinase 4q 1

CDS1 Phosphatidate cytidylyltransferase 1 4q 1

CNOT6L CCR4-NOT transcription complex, subunit 6-like 4q 1

Autism candidate gene search
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of GENIES is represented with semantic trees. A separate

module unwinds these complex output trees into simple

binary statements that are saved into the GENEWAYS know-

ledge base. The GENEWAYS system extracts some percentage

of incorrect, redundant or contradictory statements that

continue to pose bioinformatic challenges (Krauthammer

et al. 2002), and currently requires manual curation and

annotation. The user can conveniently request information

about each interaction and retrieve the complete articles

from which the information was extracted.

The pathway built with GENEWAYS was based on two sets of

genes. The first consisted of about 20 genes that had been

previously identified in the literature as playing a role in aut-

ism, either from positive association findings (Table 1),

known chromosomal abnormalities or similar methods. The

second list was the complete list of 383 positional candidate

genes. GENEWAYS was then used to try to identify connections

between these two groups of genes and to observe how

those potential candidates might interact with each other and

with other pathways. Currently, it is only possible to examine

the GENEWAYS database by building a pathway out from a

single gene, rather than having an exhaustive algorithm sys-

tematically identify all possible interactions. GENEWAYS was

used to identify and visualize all the meaningful connections

from the first list of known autism candidates to any informa-

tion stored in the database. Several of the identified genes in

this pathway were located within our linkage regions. Next,

additional positional candidate genes were tested to see if

they were connected with the same pathway (Method 6 in

Table 3). We added an additional 30 positional candidates

that we deemed most likely to contribute to ASD. These

were genes that from the manual search made the most

logical sense to possibly be involved in ASD phenotypes.

Of the 30 genes that we examined, only six had direct

connections to other genes in the pathway. Only those 30

candidates were examined using this strategy because our

experience with this software suggests that it is important to

limit the number of genes examined in order to produce an

informative pathway that provides testable connections rather

than an exhaustive but unwieldy pathway. Each arrow in Fig.2

represents either a physical or a logical interaction. Logical

connections may represent multistep processes that include

intermediaries not shown in the diagrams.

Transcription microarray meta-analysis

Whole genome gene expression arrays were used to identify

possible functional relationships by searching for genes that

are coexpressed with key autism candidate genes and pos-

itional candidate genes, based on mRNA expression microar-

ray data. To increase the reliability of coexpression detection,

CXCL1 Chemokine (C-X-C motif) ligand 1 4q 2

EIF4E Eukaryotic translation initiation factor 4E 4q 4, 5, 6

FGF5 Fibroblast growth factor 5 isoform 1 precursor 4q 2

GRID2 Glutamate receptor, ionotropic, delta 2 4q 1, 2

PTPN13 Protein tyrosine phosphatase, non-receptor type 13 4q 5

HPSE Heparanase 4q 5

IL8 Interleukin 8 precursor 4q 4

NFKB1 Nuclear factor of kappa light polypeptide gene 4q 1, 2

NK16-1 NK6 transcription factor related, locus 1 4q 1, 2

NUP54 Nucleoporin 54 kDa 4q 1, 2

SHRML Shroom-related protein 4q 1

SNCA Alpha-synuclein isoform NACP140 4q 1, 2

SPBP DNA-binding protein amplifying expression of 4q 1, 2

RAP1GDS1 RAP1, GTP-GDP dissociation stimulator 1 4q 5

PKD2 Polycystic kidney disease 2 4q 6

TACR3 Tachykinin receptor 3 4q 1

UNC5C Unc-5 homolog C 4q 2

SF2 Otoferlin 8q 1

MTBP Mdm2, transformed 3T3 cell double minute 2, p53 binding protein 8q 5

TAF2 TBP-associated factor 2 8q 5

ZHX1 Zinc-fingers and homeoboxes 1 8q 1, 2

Table shows all candidate genes within our linkage regions that were found by different search strategies.

Method:

1 ¼ Manual search of biological databases

2 ¼ Gene Ontology (GO) query

3 ¼ Positive association study (Table 1)

4 ¼ PATHWAYASSIST ‘neighbors’

5 ¼ PATHWAYASSIST predicted pathway candidates

6 ¼ GENEWAYS predicted pathway candidates

Yonan et al.
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only patterns of coexpression that were consistent in multiple

data sets were used, since a coexpression relationship that is

found in two or more independent studies is less likely to be

an artifact. Because we did not have access to sufficient

quantities of high-quality human brain gene expression data,

we analyzed the homologs of our candidate genes in a set of

seven independently collected mouse brain gene expression

data sets. Of the 383 candidate genes, 170 had known mouse

homologs, many of which are curated orthologs, which were

then used for further analysis.

Of the sevenmouse brain gene expression data sets used for

Transcription Microarray Meta-Analysis, five were from unpub-

lished in-house data and two were from published data sets

(Sandberg et al. 2000; Zhao et al. 2001). Except for the dataset

of Sandberg, which included data from six brain regions, all

samples were from the hippocampus. Zhao et al. compared the

subfields of the hippocampus. The additional data sets from our

group are currently unpublished and consist primarily of test-

control studies, with between 8 and 24microarrays per data set,

distributed as biological replicates of each condition. The condi-

tionsstudied ineachof thesedatasetswereasfollows:Youngvs.

oldmice (M. Verbitsky, A.L. Yonan, G.Malleret, E.R. Kandel, T.C.

Gilliam & P. Pavlidis, submitted); protein kinase C-gamma

knockout vs. control mice; mice expressing a dominant negative

protein kinase A regulatory subunit (R(AB); Abel et al. 1997) vs.

control; a separateexperimentusingR(AB) andcontrol animals to

examine the effects of context-cued fear conditioning; and an

analysis of mice expressing a dominant-negative inhibitor of

CCAAT/enhancer-binding protein-family member transcription

factors, compared to controls (Chen et al. 2003). Each data set

was filtered to remove genes clearly lacking detectable expres-

sion, removing 30%of geneswith the smallestmaximal expres-

sion in each data set. Each gene was then analyzed to identify

genes it was coexpressed with. For each gene, the Pearson

correlation coefficient of all pairs of gene expression profiles in

the data set was calculated. A P-value was calculated for the

Pearson correlation assuming the null distribution follows a t-dis-

tribution (Zar 1999).P-values for eachcorrelationwereBonferroni

corrected, and genes with corrected P-values < 0.01 were con-

sidered coexpressed with the query gene. We note that this

method does not make use of the experimental grouping of the

samples (e.g., young vs. old), and thus genes which are coex-

presseddonot necessarily (indeed, typically do not) have expres-

sion patterns that are ‘relevant’ to the originally defined

experimental groups. Pairs of genes that meet the criteria for

coexpression were entered in a database. From the seven data

sets, for all genes examined by the microarrays (�10000), we

extracted�200000 gene pairs (< 0.1%of all possible pairs).We

then screened this database for pairs involving a positional candi-

date gene homolog that was identified in at least two of the

seven data sets. We also attempted to identify genes that

were coexpressed with the 13 genes implicated by positive

findings from association studies (Table1). However, we were

unable to identify any genes in our linkage regions that were

coexpressed with these genes (data not shown).

Results

Table 1 summarizes results from studies that have sought

to detect allelic association between candidate genes and

autism or autism-related phenotypes. A total of 13 genes and

three markers spanning 10 distinct cytogenetic regions

purportedly show positive evidence for allelic association

to autism. Of these 10 regions only 17q11 is concordant

with the linkage regions identified in Yonan et al. in press

(Fig. 1).

Table 2 summarizes the results from nine genomewide

linkage studies for autism and ASD. Interpretation of genetic

linkage to common heritable disorders is fraught with uncer-

tainity and cross-study comparisons are not straightforward

(Altmuller et al. 2001). All other factors being equal, larger

sample studies are less prone to both false positive and false

negative errors, thus we focused on the five strongest link-

age signals from the large Yonan et al. study rather than, for

example, choosing the five strongest linkage signals across

all nine genomewide scans, or the five regions most sup-

ported by independent studies. As shown in Table 2, the

Yonan et al. study (345 multiplex families) is more than

three times the size of other reported genomewide studies.

When comparing the results from Yonan et al. (in press) with

those of other published studies in which evidence for link-

age exceeded an MLS> 1.4 (P< 0.01; Nyholt 2000), overlap

was identified on 17q (IMGSAC 2001a). The five putative

ASD linkage regions selected for study are indicated in

Fig. 1 (also shown as bold in Table 2).

Semi-automated search for ASD candidate genes

In a first attempt to parse positional candidate genes, we

used public and commercial biological databases, together

with Gene Ontology formalisms (see Materials and methods)

to predict a subset of ‘neural related’ genes of potential

relevance to ASD (Table 3). Candidates were selected from

the 383 positional candidate genes based upon information

gathered by manual search of the public UCSC Human

Genome Browser and the proprietary Celera Discovery

System together with their related links (Method 1,

Table 3). A further search using neural-related GO terms

(see Materials and methods) identified 11 additional genes

(TIAF1, TNFAIP1, TRAF4, CARD6, CCL28, ITGA2, CHRM4,

MDK, CXCL1, FGF5, UNC5C) not already identified by the

manual search (Method 2, Table 3). Finally, an additional

four candidate genes (IL6ST, LIFR, EIF4E, IL8) were identi-

fied using the PATHWAYASSIST computational software based

upon their predicted network association with neural-

related pathway genes (Method 4, Table 3; see Materials

and methods).

Computational pathway prediction methods

In the present paper, we have attempted to leveragewhat little

information is available about the genes that may contribute to

autism in order to identify additional candidate genes for

Autism candidate gene search
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autism based on the results from our genomewide linkage

study. Our hypothesis was that by constructing pathways

between the genes already suspected to be involved in autism

and our positional candidate genes, we could identify a subset

of those positional candidates more likely to be involved in

autism.

GENEWAYS’ predictions regarding the connections between

several of the positional candidate genes and a short list of

genes suspected to be involved in autism (including both

genes positively associated with autism and biological infer-

ences) are shown in Fig. 2. Interactions among three of the

genes positively associated with autism (GLUR6, HRAS1 and

SLC6A4; shown as circles with red letters) together with

connecting pathway genes (blue circles), molecules (red tri-

angles) and processes (yellow rectangle), and 10 positional

candidate genes (brown circles) were discovered (Fig. 2;

Method 6, Table 3). When using the GENEWAYS program,

each connecting line is a ‘clickable’ link that displays the

underlying text that supports the interaction.

Gene networks illustrated in Fig. 3 were developed using a

conceptually similar strategy, using PATHWAYASSIST instead of

GENEWAYS. The PATHWAYASSIST ‘Build Pathway’ function found

valid connections (as determined by manual inspection)

between 2 of the 13 genes that have been positively asso-

ciated with autism (GLUR6 and UBE3A; Table 1) and a subset

of the positional candidate genes. Positional candidates that

Figure 2: GeneWays pathway showing the interrelationships of several positional candidate genes. This pathway was based on

previously identified candidate genes of autism disorder and then built out to show how some of our positional candidate genes may

interact. Small molecules are shown as pink triangles, processes are shown as yellow boxes, positional candidate genes found from

genomewide linkage study for ASD are shown in brown circles, and all other genes that connect the pathway are shown in turquoise

circles. The three gene names that are shown in red text are genes that have been identified as positively associated with autism

(Table 1). Note that 5-HTT (serotonin transporter) is the same gene as SLC6A4.

Yonan et al.
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were found to have valid connections to this pathway are

shown as Method 5, Table 3.

Co-expression data, transcription microarray meta-
analysis

We analyzed patterns of whole genome gene expression

across multiple microarray data sets to identify possible gene

regulatory interactions between the selected set of autism

candidate genes and a subset of positional candidate genes.

Of the 383 candidate genes analyzed, murine homologs for

170 geneswere identified, whichwe then used to query seven

independent mouse brain expression data sets. No reliable

coexpression patterns were detected among the 13 positively

associated autism candidates and the subset of 170 positional

candidates. However, 10 of the 170 positional candidates

showed highly reliable coexpression with one or more genes

that were detected in multiple gene expression data sets

(Table 4). A total of 107 genes were coexpressed with the set

of 10 query genes. Based on their functions and annotations,

we determined that a subset of these 107 genes showed

potential relevance to neurodevelopmental disorders (Table4).

Discussion

In this study we have sought to apply emerging bioinformatic

tools to a problem that characterizes nearly all gene-mapping

studies that target common, heritable disorders. Common

heritable disorders are characteristically multigenic and

heterogeneous in nature. Consequently, linkage peaks

tend to be broad and weakly significant such that subse-

quent positional mapping and gene identification is greatly

complicated. In a minority of cases, follow-up allelic

association analysis has apparently been used successfully

to delimit the disease gene region and to identify the

disease related genetic variation (Horikawa et al. 2000;

Ogura et al. 2001). The recent sequencing of the human

genome, along with the genomes of other well-researched

organisms, now makes identification of positionally mapped

genes a straightforward bioinformatic exercise. However,

knowledge of which genes reside within an interval alone

does not significantly change the complexity of gene mapping.

Positional mapping poses unique challenges that are

well suited for computational data-mining approaches. Peak

linkage findings demarcate chromosomal regions most likely

Figure 3: A pathway built using PATHWAYASSIST between genes positively identified in association studies for autism and 203 of

the 383 positional candidates. Two of the 13 such positively associated genes (ovals with yellow centers) were found to interact with

positional candidate genes (ovals with green centers) via PATHWAYASSIST. The subset of interactions shown here was chosen as being

relevant to the pathway originally built out from the positively associated genes.

Autism candidate gene search
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to harbor disease-related genetic variation, yet positional

candidate genes pose unique bioinformatic problems: some

portion of peak regions will be false positives and harbor no

disease related genes, some peaks that do harbor disease

related genetic variation will consist of only one disease-

related gene among other genes that bear no relationship

to the disease, other peaks might obtain their prominence

due to the contribution of more than one disease-related

gene, and some portion of disease related genes will likely

reside outside the identified peak regions.

Table 4: Genes co-expressed with positional candidates based on gene expression data from mouse brain

Index

gene

Gene description Gene

accession ID

Linkage

region

(chromosome)

BP position Mouse

homologue

Number

of matches

Co-expressed

candidates

gene

HNRPDL heterogeneous nuclear NM_005463 4 83737143 Mm.195310 17 piccolo (presynaptic

ribonucleoprotein D-like cytomatrix protein)*

matrin 3

PPP3CA protein phosphatase 3

(formerly 2B), catalytic

NM_000944 4 102337365 Mm.293 4 Mm.6150 (Highly

similar to HAPP_RAT

Huntingtin-associated

protein-interacting

protein)

PKD2 polycystin 2 NM_000297 4 89321599 Mm.6442 2

PELO CGI-17 protein NM_015946 5 52066463 Mm.3241 2 glutamine synthase

NDUFS4 NADH dehydrogenase NM_002495 5 52827009 Mm.14442 1 potassium voltage-gated

(ubiquinone) Fe-S channel, Shal-related

protein 4 family, member 2

PRLR prolactin receptor‡ NM_000949 5 35064208 Mm.2752 1 ectonucleotide

pyrophosphatase/

phosphodiesterase 2†

ZHX1 zinc-fingers and NM_007222 8 123929781 Mm.37216 25 aquaporin 4;

homeoboxes 1‡ quaking;

cerebellar postnatal

development protein 1

ENPP2 ectonucleotide NM_006209 8 120238123 Mm.28107 14 prolactin receptor†, ‡;

pyrophosphatase/ calmodulin-like 4;

phosphodiesterase SLC4A2;

TTR

ALDOC aldolase C, NM_005165 17 26752009 Mm.7729 40 Calmodulin;

fructose-bisphosphate neurochondrin-1;

thyroid hormone

receptor alpha;

protein;

procholecystokinin

hippocampal amyloid

precursor (CCK)

JJAZ1 joined to JAZF1 NM_015355 17 30113956 Mm.21964 1

Genes that are located within the 1-LOD support interval of our QTL regions (Index Genes) and that belong to classes of coexpressed genes.

First the mouse homologue of each index gene was identified (when available). In the absence of appropriate human gene expression data, we

utilized 7 independently collected sets of mouse brain gene expression data, consisting of 8–24 microarrays each, to develop classes of

coexpressed genes. We identified genes that were reproducibly coexpressed (in two or more of the data sets) with the mouse homologue of

the index gene. When an index gene belonged to a functional expression class, the other genes in that class were identified (total # of matches),

and the likely candidates from that expression class identified. Candidate genes so identified may be downstream targets of a transcriptional

activation pathway common to the index gene and the candidate, with the index gene acting either as a transcription factor (for example, zinc-

fingers and homeoboxes 1), or as the modulator of a transcription factor.
* Same gene as PCLO in Table 1 (Nabi et al. 2003).

† These genes are found as both index genes and coexpressed candidates.
‡ Genes also identified in Table 3.

Yonan et al.
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In addition to positional candidate genes, other types of

genetic evidence are typically used to identify common dis-

ease causing alleles. Allelic association, or linkage disequilib-

rium, is used to detect historical association between a

candidate gene variant and disease phenotype. Association

studies are vulnerable to many of the same genetic complex-

ities that confound genetic linkage studies with the following

difference: association studies are robust to locus heterogen-

eity (since they only test one locus at a time), but con-

founded by allelic heterogeneity. Association studies are

also believed to be quite vulnerable to genotypic differences

related to population substructure (background genotypic

differences that are unrelated to phenotype) (Hoggart et al.

2003). Thus, the ‘candidate status’ of most candidate genes

is subject to uncertainty. Nevertheless, the subset of genes

contained within a suggestive linkage peak is likely to be

enriched for actual disease genes compared to the genome

as a whole.

Both GENEWAYS AND PATHWAYASSIST are pathway prediction

methods that are designed to recognize written language

and to extract key phrases that describe basic biological

relationships between genes, small molecules, cellular pro-

cesses and similar phenomenon. PATHWAYASSIST reads

abstracts, whereas GENEWAYS reads the entire article. Both

programs use sophisticated algorithms to predict pathway

interactions. Because of problems with interpretation of lan-

guage, figures and tables, a number of oversights and errone-

ous conclusions are inevitable in these programs. Thus,

human interpretation and curation of these databases and

their output remain critically important. Another aspect of

natural language processing algorithms is that they must

discriminate between physical interactions (binding or cleav-

age, oxidation, etc.), and logical interactions (e.g., the effect

of a drug on gene expression). In the first case, two mol-

ecules are known to interact directly, whereas in the latter

case, the mechanism of interaction may involve a multistep

pathway. Thus, the pathways identified by these algorithms

must be carefully filtered and/or checked by an expert user in

order to establish the type of experimental data that was

collected and to determine what biological experiments are

required to further test the proposed pathways.

Identification of candidates by the ‘manual’ search strat-

egy, the GO strategies and by the PATHWAYASSIST AND GENEWAYS

pathway prediction programs all depend upon data from the

published literature. In contrast, the transcription microarray

meta-analysis is largely based on unpublished experimental

data, and thereby provides a completely independent bioin-

formatic approach to the same positional mapping problem.

Since criteria to distinguish correct from incorrect bioinform-

atic predictions are often lacking, it is desirable to employ

independent computational strategies and identify conver-

gent pathway predictions (Eisenberg et al. 2000). Yeast

whole genome gene expression studies show that coex-

pressed sets of genes are enriched for functionally related

or physically interacting genes (Eisen et al. 1998; Ge et al.

2001). Genes that are coexpressed may be coregulated by a

common transcription factor. Alternatively, one of the genes

in a group of transcriptionally coregulated genes may be the

transcription factor that drives the expression of the others

(e.g., ZHX1, Table 4) or it may simply be upstream in a

transcriptional cascade of genes that influence the expres-

sion of downstream members of the same cascade. Thus,

we used this method to identify genes with known function

in the brain that may be relevant to ASD, and which are

coexpressed with positional candidate genes identified in

the genome scan. Such genes might be the downstream

targets of transcription factors that reside within the linkage

regions and possess functional polymorphisms.

The ability to predict gene expression pathways identified

using the method presented in this paper depends heavily on

the quality and applicability of the underlying expression data.

In the present example, we utilized expression data from

mouse brains, rather than human brains, due to availability

– an obvious shortcoming. Another limitation is that six of the

seven datasets were derived from the hippocampus, rather

than the entire brain, or a brain region more relevant to autism

(e.g., amygdala). Development of large, well-characterized

databases that can store and manage gene expression data

and integrate with a range of other heterogeneous data sets,

will likely overcome these shortcomings in the near future

(e.g., Bader et al. 2003). More sophisticated computational

programs to predict regulatory motifs (e.g., Bussemaker et al.

2001), together with high throughput experimental

paradigms for selective and systematic perturbation of well-

characterized biological systems (Barstead 2001; Elbashir

et al. 2001; Ideker et al. 2001; McCaffrey et al. 2002) will

likewise increase the power and scope of this approach.

Perhaps the most promising strategies are those that com-

bine the rigor of high throughput experimental paradigms

with the speed, power and scope of computational data-

mining approaches. Whole genome yeast and Drosophilia

‘two-hybrid arrays’ test every permutation of protein–

protein interaction, and despite a high false positive rate,

are ideally suited for integrated computational analyses

(von Mering et al. 2002). Mass spectrometry analysis of

purified protein complexes (Ho et al. 2002) and the

exploration of genetic interactions by identification of syn-

thetic lethal gene combinations in yeast (Tong et al. 2001)

are both potentially powerful complimentary approaches

to the prediction of interacting gene networks and path-

ways.

It is estimated that upwards of 90% of an individual’s

liability to develop autism or ASD is determined by genetic

factors, yet the disease liability attributable to any single

genetic variant may be so small that it is undetectable by

current gene mapping strategies. This problem may be

addressed to some extent by strategies to predict biological

pathways since these strategies may identify interacting sets

of genes that together account for a significant portion of

heritable disease liability. The role of additive vs. epistatic

Autism candidate gene search
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gene interactions in the etiology of common heritable dis-

orders is unclear at this point, as is the importance of this

distinction in the mapping of such traits and disorders

(Carrasquillo et al. 2002; Cox et al. 1999; Holmans 2002;

Tempeton 2000). Computational pathway predictions

together with Gene Ontology annotations, gene regulatory

information and other molecular interaction data should

inform the characterization of additive vs. epistatic gene–

gene interactions in ways that complement genetic studies.

Thus, it is hoped that computational and bioinformatic

approaches will lead to the identification of ‘candidate gene

networks’ that encompass a significant fraction of a given

disease’s heritable component.

Table 3 summarizes the candidate gene predictions

based upon six bioinformatic methods. With the exception

of LIFR and EIF4E, all candidate genes detected by two or

more of the automated search strategies were likewise

detected by manual searches, suggesting that convergent

findings from automated strategies are more reliable. The

identified candidate genes are biased in favor of neurobio-

logical disease etiology due to our search strategies. How-

ever, the etiology of autism may depend on susceptibility to

environmental insults, rather than primary neurological def-

icits. For example, four candidates with known immunological

function (IL6ST, LIFR, CD44 and IL8) were only detected by

predicted pathway relationships, reflecting the lack of bias

inherent in these pathway prediction approaches (Table 3).

In the present study we identified several genes using

multiple bioinformatic approaches. Most notably the sero-

tonin transporter (SLC6A4 a.k.a. 5-HTT) was identified by all

but one of our search strategies (Table 3) including allele

specific association studies (Table 1). Of the 408 microsatel-

lite markers genotyped for linkage to ASD in the study by

Yonan et al. (in press), the single most significant linkage was

detected by a marker that maps less than one megabase

distal to SLC6A4. It is also noteworthy that SLC6A4 is

located in the only linkage region identified by Yonan et al.

(in press) that overlaps with the findings of another linkage

study (Table 2). Other studies have indicated that autism

patients and their unaffected first degree relatives have ele-

vated blood serotonin levels and there is evidence that drugs

that selectively target the serotonin transporter can amelio-

rate some autism related symptoms (Cook & Leventhal

1996; Gingrich & Hen 2001). Thus SLC6A4 appears to be a

particularly promising candidate gene for ASD, although it is

not clear that the new data substantially bolster pre-existing

data. Both pathway prediction programs predict relationships

between glutamate receptor 6 (GLUR6; which has been

positively associated with autism; Table 1) and positional

candidates glial cell derived neurotrophic factor (GDNF) and

SLC6A4, though not obviously via common pathways.

Finally, the prolactin receptor (PRLR), and zinc-fingers and

homeoboxes 1 (ZHX1), were identified by the transcriptional

pathways prediction method (Table 4) as well as by the man-

ual and GO strategies (Table 3).

Piccolo (PCLO) was identified by the transcriptional path-

ways prediction method as being coexpressed with the pos-

itional candidate, heterogeneous nuclear ribonucleoprotein D-

like (HNRPDL) (Table4). While PCLO itself is not located in our

linkage region, and thus is not a positional candidate, this

finding raises the possibility that HNRPDL may be upstream

of PCLO in a transcriptional cascade. Based on its function,

PCLO has been suggested as a possible candidate gene for

autism (Fenster & Garner 2002), although this is not substan-

tiated by allelic association (Table1) (Nabi et al. 2003). The

coexpression data suggest an alternative possibility: a poly-

morphism within HNRPDL may lead to differential expression

of downstream targets that include PCLO. Thus the present

results suggest that HNRPDL might be a viable candidate for

autism, a conclusion that would not have been reached by any

of the strategies whose results are reflected in Table 3.

The current study was designed to explore emerging bioin-

formatic technologies for the purpose of parsing large sets of

genetically mapped (positional) candidate genes in search of

disease related genetic variation. Using a large family study

of autism and ASD we show that sophisticated bioinfor-

matics approaches can be applied to this task and that con-

vergent approaches might be used to offset inherent biases

in any given approach to ultimately identify a subset of genes

that are enriched for disease related genetic variation in the

study sample, thus providing testable hypotheses. We

further note with optimism that the genesis of integrative

databases, powerful whole genome computational data-

mining approaches, and high-throughput experimental para-

digms to evaluate molecular interactions and pathway asso-

ciations, bode well for the merger of bioinformatic and gene

mapping approaches in the future.

Supplementary material

The following material is available from: http//

www.blackwellpublishing.com/products/journals/suppmat/

GBB/GBB041/GBB041sm.htm

The supplementary material contains the complete list of

all 383 positional candidate genes in the top five regions from

Yonan et al. (2003). There is a detailed explanation of the

positions in cM and Mb for each candidate region, as well as

their LOD scores in each region. Also, each chromosomal

region is shown separately with only the genes that reside in

that region listed for ease of comparison.
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