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Evidence for Sex-Specific Risk Alleles in Autism Spectrum Disorder
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We investigated the genetic aspects of the large sex bias in the prevalence of autism spectrum disorder by monitoring
changes in linkage when the family set for an affected sibling pair genome scan is subdivided on the basis of the
sex of affected children. This produces a significant excess in the total number of linkage peaks ( )58P p 1.3 # 10
and identifies a major male-specific linkage peak at chromosome 17q11 ( ). These results suggest that sexualP ! .01
dichotomy is an important factor in the genetics of autism; the same strategy can be used to explore this possibility
in other complex disorders that exhibit significant sex biases.

It is well established that male and female brains develop,
are structured, and function differently. Indeed, a large
body of research has accumulated that shows not only
that males and females process input in different ways
(Shaywitz et al. 1995; Rhodes and Rubin 1999; Wrase
et al. 2003) but also that this sexual dichotomy extends
to the macroscopic structures of the brain (Giedd et al.
1997; Wisniewski 1998). Genes located on the X chro-
mosome and those genes directly related to the function
of sex-related hormones are clear candidates. It is clear
that sex hormones play many roles in normal male and
female development. There is also increasing evidence
that differentially regulated genes on the autosomes are
integrally involved in normal sex-specific brain develop-
ment (Reisert and Pilgrim 1991; Jin et al. 2001; Dewing
et al. 2003). It remains unclear to what extent these
regulatory effects may ultimately relate to hormones or
X-chromosomal genes. Although the orchestration of all
the factors involved in normal male and female devel-
opment and functioning is complex and has only begun
to be understood, it is evident that there are substantial
differences between the sexes at the molecular level.

Many human diseases also show a striking level of sex
bias in terms of disease prevalence and severity. One of
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the prime examples of such a disorder is autism spectrum
disorder (MIM 209850) (Folstein and Rosen-Sheidley
2001). Autism is the most severe form of a set of complex
neurobehavioral disorders that are marked by impaired
language development and social reciprocity and by the
stereotyped and repetitive behaviors. The male:female
ratio of idiopathic autism is 4–10:1, and this ratio in-
creases as the intelligence of the affected individuals in-
creases (Folstein and Rosen-Sheidley 2001). There is a
noticeable male bias in all of the pervasive developmen-
tal disorders, of which autism is the archetypal form.
The possible exception is Rett syndrome (X-linked domi-
nant), which affects predominantly females, primarily
because most affected males are not viable. Other neu-
rodevelopmental disorders, including dyslexia (Lambe
1999) and attention-deficit/hyperactivity disorder (Swan-
son et al. 1998), also show a male bias in prevalence.
Although there is some evidence of X-chromosome con-
tribution to aspects of complex social behavior (Skuse
1999), no association with other cognitive features—
such as attention, executive functioning, or language—
that underlie these neurodevelopmental disorders has
been identified that can account for the strong sex bias.
We reasoned that, since sex bias is a prominent and
consistent feature of many neurodevelopmental disor-
ders, it should be incorporated into the search for sus-
ceptibility alleles.

To conduct a genomewide survey to search for po-
tential sex-related loci in autism, we started with linkage-
scan data from a large affected sibling pair (ASP) data
set (Autism Genetic Resource Exchange [AGRE]) and
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Table 1

Sample Characteristics

CHARACTERISTIC

SAMPLE

MO FC

No. of families 148 109
No. of autistic individuals 243 189
No. of NQA-affected individualsa 27 10
No. of broad spectrum–affected individuals 44 39
Total no. of affected individuals 314 238
Total no. of ASPs 170 145

a See Geschwind et al. (2001) for more information.

then subdivided the families for further scans that were
intended to highlight the sex differences. The subdivision
was based on the rationale that, under the hypothesis
that at least some of the major genetic risk factors for
autism differ between males and females, an affected
female child is positive evidence that a family carries the
relevant female risk factors, whereas families that have
(so far) produced only affected male children are en-
riched for carrying the male risk factors. Thus, splitting
the family set on the basis of the presence of an affected
female child should stratify the cohort with autism into
groups that are more homogeneous for sex-sensitive risk
loci.

An essential addition to this basic strategy is a proce-
dure for interpretation of the results in the presence of
confounding biases. Specifically, the linkage scans per-
formed on these sex-split sets are biased to have the
linkage peaks present in the original unsplit set. In fact,
the expected behavior would be that the LOD scores
from the original genome scan would simply be reduced
in proportion to the reduction in sample size in each
subset. To account for this, we devised the following
statistical methodology: recall that, for assessment of the
significance of the original scan, the null hypothesis is
that the autism cohort does not differ from the general
population or, more specifically that the ASP identical-
by-descent (IBD)–sharing probabilities (z0,z1,z2) do not
differ from the Mendelian values of (0.25,0.50,0.25). In
contrast, the null hypothesis for the splitting study is
either that the split sets are a random division of the
original cohort or that their splitting statistics would be
obtained by a random sampling from the (z0,z1,z2) frac-
tions that exist in the cohort. Thus, we propose to evalu-
ate the primary significance of the splitting by comparing
it with empirical results that are based on many matched
random splittings. However, once we accept the split
scans as meaningful subdivisions of the original data set,
it is also interesting to assess them as genome scans in
their own right—that is, relative to the null hypothesis
of Mendelian sharing. For comparison of any scan (or-
iginal or split) with this null hypothesis, we compare the
observed scan with the corresponding random simula-
tion scan data generated by genome scans of ASP sets
created by the random generation of offspring-genotype
data from the parental genotype data.

In the present study, genotype and phenotype data from
257 nuclear families with two or more affected children
were obtained from AGRE, with the exclusion of MZ
twins and individuals with nonidiopathic autism (Yonan
et al. 2003). Affected children include those who have
received a diagnosis of full autism, not quite autism
(NQA), and broad-spectrum disorder. Sample details,
diagnostic criteria, and genotyping procedures are de-
scribed elsewhere (Geschwind et al. 2001; Yonan et al.
2003). We typed 408 markers at an average density of

8 cM, as described elsewhere, and the raw data have
been made publicly available on the AGRE Web site
(Yonan et al. 2003). Sibships were subdivided into two
groups—the male-only (MO) group and the female-con-
taining (FC) group—on the basis of the presence of at
least one affected female within the family. The strati-
fication of the data resulted in two comparably and rea-
sonably sized genome-scan sets, with the MO group con-
sisting of 148 (58%) independent nuclear families and
the FC group consisting of 109 (42%) families (table 1).
Within a family, each possible ASP was counted as one
ASP. Therefore, a family with only two affected children
contributed one ASP to the total number of ASPs of that
group, whereas a family with three affected children con-
tributed three possible ASPs to the total. The majority
(77% in the MO group; 79% in the FC group) of af-
fected children in both groups received a diagnosis of
full autism.

Complete genome scans for linkage were performed on
the unsplit family set, on the MO and FC sex-split family
sets, and on various random simulation data sets de-
scribed below. The scans were performed using Gene-
hunter (version 1.3), with the nonparametric IBD-shar-
ing maximum-likelihood score (MLS) for the autosomes,
and Genehunter-Plus (version 1.2) with the IBD-sharing
NPL score for the X chromosome (X-NPL). The scans
were performed using the Haldane mapping function,
with all ASPs weighted equally; sharing LOD scores were
computed using the possible triangle method; and no
assumptions were made about the mode of inheritance.

Across the genome, we calculated two different P value
curves on the basis of the corresponding LOD score
curves. The first is the local empiric P value for the local
LOD score, which measures the significance of LOD
scores relative to those from samples with no biases in
sharing. This was obtained—for the original, MO, and
FC scans—by performance of 1,000 randomly simulated
genome scans in which offspring genotypes for each
simulation were randomly generated from parental geno-
types by assignment of random parental haplotypes and
by use of appropriate intermarker recombination fre-
quencies. These data provide the empirical probability



Reports 1119

of observing a LOD score of any given size at any given
location throughout the genome, relative to the null hy-
pothesis of Mendelian sharing. The second P value is
the local sex-stratification P value, which is based on
the LOD score in the original scan and which measures
the significance of the enhancement in LOD score
achieved by the splitting. To obtain this, we generated
1,000 random divisions of the 257 families analyzed in
the original genome scan into two size-matched groups
(consisting of 109 and 148 families) and performed link-
age analysis for each sample subset. This provided the
empirical probability of observing any LOD score at any
given location throughout the genome, in either split
scan, given the LOD scores observed in the given scan.
The original genome scan LOD score is plotted in full
(fig. 1A), and LOD scores obtained from the observed
MO and FC families are also shown in full (fig. 1B and
1C), with the sex-stratification–based 95% CI LOD
curves and regions of significant enhancement high-
lighted for reference. Close-up figures with 99% and
99.9% CI curves (based on 10,000 splitting simulations)
are also shown for chromosomes of special interest (fig.
1D and 1E).

A total of 25 distinct regions of the genome showed
locally significant enhancement of linkage scores in our
sex-split strategy (sex-stratification ) (fig. 1B andP ! .05
1C); however, the LOD scores involved are usually low.
The only peak that reached genomewide significance
was at chromosome 17q11 in the MO families (original

; MO ; sex-stratificationMLS p 3.2 MLS p 4.3 P !

; MO empiric ) (fig. 1D). This LOD peak.01 P p .008
is located at 53cM, according to the Marshfield map
(Center for Medical Genetics), flanked by markers
D17S1294 and D17S798. The next largest and most
significantly enhanced peak was at 4q32.3-35.1 in the
FC families, although the peak does not reach genome-
wide significance (original ; FCMLS p 0.76 MLS p

; sex-stratification ; FC empiric )2.7 P ! .003 P p .15
(fig. 1E). Two additional peaks on chromosomes 10q
(original ; MO ; sex-stratifica-MLS p 1.7 MLS p 2.1
tion ) and Xq (original ; MOP ! .03 X-NPL p 0.87

; sex-stratification ) were detectedX-NPL p 2.0 P ! .02
in the MO families, but neither LOD score approaches
genomewide significance.

It is important to assess whether such local peak en-
hancements remain significant when we correct for the
multiple testing at many regions of the genome. There
is some ambiguity as to how to perform this correction
most appropriately, but a reasonable approach would
be as follows. We can condition on the peaks “clearly”
identified in the original scan as given. The overall sig-
nificance of a particular enhancement at the peaks “clearly
identified” in the original scan should be Bonferroni cor-
rected for independent multiple testing at the total num-
ber of “comparable” peaks in the original scan. By ex-

tension, for peaks that appear essentially de novo in the
split scans, the significances (both degree of enhancement
and non-Mendelian sharing) should be corrected for
multiple testing across the entire genome, as judged by
the genomewide frequency of similar local results in the
corresponding simulations, which is the most conserva-
tive form of multiple-testing correction. Under this ap-
proach, the enhancement of the dominant peak in the
original scan at 17q11 requires no multiple-testing cor-
rection since it was uniquely identified. At most, it would
require a factor of 2–4 for the number of comparable
major peaks in the original scan. Either way, this still
suggests genomewide-significant sex-related enhancement
at 17q11. Similarly, the 4q32 region identified in the FC
scan had a local empiric P value of .06 ( ) inMLS p 0.76
the original scan. The region contained 18 peaks of equal
or greater local significance in the original scan, so its
local sex-stratification enhancement of 0.003 should be
corrected by this factor for multiple testing—which
yields , a value that is marginally significantP p .054
after correction. However, it would not be significant if
it were instead considered to appear de novo in the FC
scan and were given a full genomewide correction. The
other two major enhanced peaks, at 10q and Xq, do not
remain significant after similar correction for multiple
testing of comparable peaks in the original scan.

Another important part of the splitting analysis is as-
sessment of whether the splitting has in fact produced a
global, significant enhancement of linkage scores. For this
purpose, we introduced a global measure of how many
“interesting LOD score peaks” are identified by the split-
ting. For the specific statistic, we count the number of
disjoint regions in the two split scans in which both (a)
the splitting produced a significant enhancement of the
LOD score (sex-stratification ) and (b) the re-P � .05
sultant LOD score was nominally significant (local em-
pirical ); note that the corresponding LOD scoreP � .05
threshold varies across the genome but has a median of
0.70 for the MLS and 1.1 for the X-NPL score. The sex-
split strategy produced a count of 16 peaks (8 from MO;
8 from FC), whereas 1,000 randomly generated split-
tings (sets matched by size with the sex-split sets) resulted
in an average count of 3.8 peaks (SD 1.5 peaks). The
1,000 simulations never produced 110 peaks; thus, the
simulation-based bound on the sex-splitting significance
is . Moreover, the simulated-peak counts quiteP ! .001
accurately fit a Poisson distribution (as expected for ran-
dom counting data), which predicts that P p 1.3 #

. This demonstrates that the specific separation into�810
MO and FC groups has a highly nonrandom relation
to the underlying genetics of the autistic cohort and
strongly supports the hypothesis that the sex-split groups
are more homogeneous for a variety of sex-related ge-
netic risk factors. The simulation data also suggest that
12 of the 16 peaks (95% CI 9–15) are independent of



Figure 1 Sex-stratified genome scans, with CIs and highlighted regions. A, Original genome scan based on all families. B and C, The genome
scan for MO and FC families, respectively, shown as multicolored lines. The black line represents the sex-stratification–based 95% CI curve; the
red sections of the scan curve denote regions where the LOD score exceeds the 95% CI (sex-stratification ), whereas the green portions areP ! .05
within the CI. D, Close-up of the MO family scan in panel B for chromosome 17, with the addition of black lines that show the original genome
scan (lowest curve) and the 99% and 99.9% sex-stratification CI curves (upper two curves). E, Close-up of the FC family scan in panel C for
chromosome 4, with the addition of black lines that show the original genome scan (lowest curve) and the 99% and 99.9% sex-stratification CI
curves (upper two curves).



Reports 1121

random splitting effects. This provides an estimate for
the total number of sex-related risk loci detected.

In contrast, similar peak-counting statistics in the origi-
nal genome scan do not produce strong evidence that the
autistic cohort is distinct from the general population. For
example, examination of disjoint regions in the original
scan in which the local empiric resulted in aP � .05
peak count of 16—which is not significant on the basis
of the simulations on random-mating data, which show
an expected peak count of 14.1 (SD 4.0; empirical P p

). Even a survey of all other possible peak-defining.16
criteria of local empiric , for , does notP � P 0 ! P ! 1
show a highly significant excess of peak counts at any
particular threshold. The most significant excess occurs
for regions where the local empiric (cor-P � P p .10
responding LOD thresholds vary across the genome, but
median values are or ), whereMLS 1 0.47 X-NPL 1 0.95
the observed peak count was 31, whereas the expected
count was 19.9 (SD 5.7; empirical ). Thus, theP p .04
original scan gave little statistical evidence that a ge-
netically distinct cohort had been isolated and was, at
best, suggestive of a number of (mostly minor) linkage
peaks interspersed with even greater numbers of false-
positive results; this suggests that the genetic heteroge-
neity of the disorder has undermined the power of the
study. In contrast, the sex-splitting procedure provides
strong evidence for identification of a real genetic dis-
tinction and clearly identifies a number of interesting
peaks, with relatively few false-positive results.

It is striking that the region of genomewide-significant
linkage found in the MO set corresponds to the region
at 17q11 that was identified as suggestive in the original
AGRE genome scan. However, the MO MLS score of 4.3
achieves genomewide significance (empiric ).P p .008
Moreover, since there is little of the original linkage sig-
nal remaining at this region within the FC families
( ; local empiric ), the excess IBDMLS p 0.50 P p .10
sharing in the MO families is sufficient to account for
the excess sharing originally detected in the whole-family
set. These observations suggest that this locus corre-
sponds to a genetic risk allele that is specific for the MO
set (fig. 1D).

The risk factor harbored at the 17q11 locus is unknown
and offers an important target for future research. One
highly studied candidate gene, the serotonin transporter
(SLC6A4), is located directly under this peak. Recently,
other groups have published nominal associations with
polymorphisms located in this gene (Conroy et al. 2004;
McCauley et al. 2004). In the present study, the closest
microsatellite to the peak (D17S1294) is 142 kb away
from this gene, and no alleles show evidence for asso-
ciation with autism.

It is tempting to simply interpret MO-specific and FC-
specific linkage peaks as male-specific and female-specific
risk loci, but this simple conclusion is erroneous. Proper

biological interpretation requires careful reasoning and,
in any case, remains uncertain, even if we assume that
complicating factors, such as sex-related ascertainment
bias, can be ignored. In the present study, a reasonable
interpretation is that MO-specific peaks represent male-
specific genetic risk factors, but FC-specific peaks pose
risk to both females and males. For clarity, note that by
“male-specific genetic risk factors” we mean that if those
genetic factors were imposed equally on a male and
a female embryo with otherwise similar genetic back-
grounds, the male would be substantially more likely to
develop autism; likewise, “female-specific genetic risk
factors” would be more likely to affect females. Under
these definitions, an MO-specific risk locus—such as
17q11—can reasonably be interpreted as a male-specific
risk locus, since, if the constellation of factors including
it conferred similar risk in females, there would be com-
parable numbers of male-male and male-female ASPs
linked to these factors and the latter ASPs would produce
a strong signal in the FC scan, contrary to what is ob-
served. In contrast, peaks unique to the FC scan—such
as 4q32—do not suggest female-specific risk factors.
This is because, in most FC families, one of the affected
siblings is male (families with only affected females are
rare, just 6.5% of families in the present study); hence,
the FC-specific susceptibility alleles that result in affected
females apparently also confer substantial risk to males
in those families. Indeed, mere comparable risk would
suggest that the FC set should contain comparable num-
bers of female-male and female-female ASPs, whereas,
in reality, there is a significant 5:1 (female-male:female-
female) bias. Thus, the alleles would seem to pose an
even greater risk to males, but perhaps a lower overall
prevalence renders the MO or whole-family genome
scans underpowered to detect these factors. Conversely,
the rarity of female-female ASPs means we lack the
power to detect true female-specific risk factors analo-
gous to 17q11.

One additional inference is that, whereas the 17q11
risk factor appears specific for males with autism, it is
not highly essential, since males with autism are abun-
dantly represented in the FC set, yet there is little evidence
of linkage to 17q11. This highlights a potentially inter-
esting molecular dichotomy in males: the (more com-
mon) form of autism that is linked to 17q11 and the
(less common) form that is not. This distinction is not
directly observable in an individual at present, but an
observable approximation that is further justified by the
general validity of our sex-splitting data would be to
divide the male patients with autism into two groups
(similar to the FC and MO set, in the present study).
This dichotomy may provide a useful basis for defining
more-consistent subphenotypes, risk groups, or thera-
peutic response groups.

It is notable that other classes of complex diseases with
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a strong genetic component show a high female:male
ratio. In addition to a number of neurobehavioral and
neuropsychiatric disorders, various autoimmune disor-
ders have high heritability, obvious genetic complexity,
and strong sex biases in prevalence or severity. There is
evidence that hormone levels play a role in autoimmune
diseases, since symptoms are known to increase or de-
crease with pregnancy and menopause. Although some
studies have linked autoimmune disorders to the X chro-
mosome (Barbesino et al. 1998), other studies have im-
plicated autosomal regions (Tomer et al. 2003), which
makes it necessary for researchers to examine autosomal-
based sex differences to explain the significant clinical
sex biases. Techniques similar to those employed in the
present study may be useful for such investigations.

Motivated by the observation of the strong sex bias
in the prevalence of autism, we developed a strategy for
using sex status to decrease the sample heterogeneity in
ASP studies and we devised a statistical methodology for
analyzing the results. When applied to the AGRE ASP
sample, stratification of families on the basis of the
presence of an affected female sibling produced a highly
significant enhancement of the linkage scan data, high-
lighted a number of otherwise minor linkage peaks from
the original scan, and clearly identified a male-specific
region of linkage on chromosome 17q11. This strategy
is suitable for large ASP studies of other complex genetic
disorders that manifest a strong sex bias, and the ana-
lytical method can be generalized to include stratifica-
tions based on other phenotypic categories as well.
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