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Abstract
Background: The autism spectrum encompasses a set of complex multigenic developmental
disorders that severely impact the development of language, non-verbal communication, and social
skills, and are associated with odd, stereotyped, repetitive behavior and restricted interests. To
date, diagnosis of these neurologically based disorders relies predominantly upon behavioral
observations often prompted by delayed speech or aberrant behavior, and there are no known
genes that can serve as definitive biomarkers for the disorders.

Results: Here we demonstrate, for the first time, that lymphoblastoid cell lines from monozygotic
twins discordant with respect to severity of autism and/or language impairment exhibit differential
gene expression patterns on DNA microarrays. Furthermore, we show that genes important to
the development, structure, and/or function of the nervous system are among the most
differentially expressed genes, and that many of these genes map closely in silico to chromosomal
regions containing previously reported autism candidate genes or quantitative trait loci.

Conclusion: Our results provide evidence that novel candidate genes for autism may be
differentially expressed in lymphoid cell lines from individuals with autism spectrum disorders. This
finding further suggests the possibility of developing a molecular screen for autism based on
expressed biomarkers in peripheral blood lymphocytes, an easily accessible tissue. In addition, gene
networks are identified that may play a role in the pathophysiology of autism.

Background
Autism and related autism spectrum disorders (including
Asperger's Syndrome and pervasive developmental disor-
der-not otherwise specified (PDD-NOS)) are considered
to be among the most devastating psychiatric illnesses

affecting children. The three core symptoms of autism
spectrum disorders (ASD) are: 1) deficits in social interac-
tions and understanding, 2) aberrant communication
and/or language development, and 3) restricted interests
and repetitive, stereotyped behaviors [1]. To date, there
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are no definitive molecular or genetic markers that allow
unequivocal diagnosis of ASD, with the exceptions of
tuberous sclerosis, Rett's Syndrome, and Fragile X Syn-
drome [2-12]. Together, these genetically defined muta-
tions are present in only a minority of individuals (<10%)
within the broad autism spectrum. The majority of diag-
noses are dependent on behavioral characteristics, accord-
ing to DSM-IV guidelines, using questionnaires such as
the Autism Diagnostic Interview-Revised (ADI-R) [13] or
the Autism Diagnostic Observation Schedule (ADOS)
[14], which are structured to evaluate children who are
approximately 2 or older in mental age. Although the
guidelines are relatively clear, the individual rater's (eg.,
parents, teachers, clinicians, therapists) perception of the
evaluated behavior leaves much room for ambiguity.
Moreover, with the more mildly affected individuals (eg.,
with Asperger's Syndrome), diagnosis is often not made
until well after the child starts school and, even then, the
child is often diagnosed with other more common disor-
ders (such as attention deficit disorder or learning disabil-
ity) before Asperger's Syndrome is considered, which
delays appropriate intervention and effective educational
programming. Thus, there is a great need to identify
biomarkers that can be used consistently in a clinical set-
ting to diagnose ASD. Furthermore, it is important to
identify biological processes that are associated with dis-
tinct ASD phenotypes in order to design effective drug
therapies targeted to specific individuals.

Although genetic linkage analyses have identified numer-
ous candidate genes for autism [15], there is little consist-
ent data that would support the use of any (or a
combination) of these as diagnostic biomarkers for ASD.
Furthermore, each candidate gene alone lends little
insight into the pathophysiology of these disorders, which
are believed to arise from dysregulation of multiple genes.
Recently, attention has turned to transcriptional profiling
approaches [16-19], which involve simultaneous, large-
scale expression analysis of thousands of genes on a cDNA
(or oligonucleotide) microarray slide, to unravel complex
psychiatric disorders. The advantage of transcriptional
profiling using microarrays is the ability to study multiple
genes in the context of functional gene networks within a
living cell, as opposed to forward genetic approaches.

So far, application of microarrays to the study of autism
has been described in just one study on post-mortem
brain tissue from autistic subjects and matched tissue con-
trols [20]. Thirty genes were identified as being differen-
tially expressed in autistic brain samples relative to
matched tissue controls on a combination of 2 separate
array platforms containing 588 or 9374 cDNA probes,
indicating that autism is associated with multiple distur-
bances in gene expression. Of this list, only a few genes
related specifically to neurological functions and, of these,

the glutamate receptor system was targeted for further
study. In a similar vein, a recent bioinformatics analysis of
autism positional candidate genes using biological data-
bases and computational gene network prediction soft-
ware demonstrates that the often disparate results from
genetic studies implicating a multitude of different genes
can be coalesced into interconnected but distinct path-
ways centered on a specific gene or genes (e.g., FOS and
TP53), or on a particular biological theme, e.g., apoptosis
[15]. Both of these studies suggest the involvement of
multiple genes not previously associated with autism and
illustrate the power of using a global approach to study
this complex disorder.

The experimental strategy used in the study reported here
was designed to tease out differences in gene expression
among genetically identical individuals with ASD which
might relate to observed differences in the degree of
expression of autistic symptoms. Inasmuch as natural var-
iations in gene expression are especially low for monozy-
gotic twins [21,22] (up to 1.76% in the latter study
involving 10,000 genes in 5 pairs of monozygotic twins,
compared to ~14% in unrelated individuals), such a strat-
egy has been shown to be useful in identifying candidate
genes for bipolar disorder [23] and osteoporosis [24].
Moreover, lymphoblastoid cell lines (LCL) derived from
blood cells of autistic individuals were used in this study
to explore the possibility that biomarkers for autism could
be expressed in easily accessible peripheral cells. Indeed, it
has been reported previously that LCL from individuals
with bipolar disorder displayed altered gene expression in
both postmortem brain tissue and lymphoblasts,
although one of the genes, LIM, was altered in the oppo-
site direction in LCL [25]. Follow-up genetic association
analyses of this gene demonstrated association of a single
nucleotide polymorphism with bipolar disorder [26],
indicating the usefulness of LCL and DNA microarray
analyses in identifying potential biomarkers of a complex
neurological disease.

While studies of gene expression in brain tissue may lead
to a better understanding of the mechanistic basis for
ASD, it is not an appropriate target for diagnostic assays.
Ideally, diagnostic assays should use easily obtained
patient samples such as blood, although there is no evi-
dence that gene expression or other markers exist in the
peripheral blood of ASD patients. However, one may
hypothesize that ASD might arise, in part, through dysreg-
ulation of expression of specific neuronal genes and that
expression differences between affected and unaffected
individuals might be present in tissues other than brain.
As a test of this hypothesis, we chose to use DNA microar-
ray analysis to examine gene expression in LCL derived
from peripheral blood lymphocytes.
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Here we report the first study using a genome-scale
approach to identify biomarkers for autism. We demon-
strate by gene expression profiling on DNA microarrays
that: 1) LCL derived from five monozygotic twin pairs dis-
cordant for diagnosed autism and/or language impair-
ment show differential gene expression; 2) a number of
the most differentially expressed genes are present in
pathways critical to the development and function of the
nervous system; 3) there appears to be a quantitative rela-
tionship between the severity of the autistic phenotype
exhibited by the twins and the expression level of certain
genes relative to that of the respective genes in cell lines
from non-affected siblings; and 4) approximately half of
the most highly differentially expressed genes map in silico
to previously reported chromosomal regions containing
autism susceptibility genes or quantitative trait loci.

Results
Differential gene expression in lymphoblastoid cell lines 
from monozygotic twins discordant for classic autism
To determine whether LCL derived from individuals with
autism exhibit patterns of gene expression that may be rel-
evant to autism spectrum disorders (ASD), gene expres-
sion profiling was performed on LCL derived from 3 sets
of male monozygotic twins, one of each pair who met
standard diagnostic criteria for autism based on the ADI-
R. In each case, the other twin, while not clinically autistic,
exhibited autistic traits and was classified either as "broad
spectrum" or "not quite autistic" according to guidelines
described by the Autism Genetic Resource Exchange
(AGRE) repository. Two of the three twin pairs had an
unaffected sibling and these were also used for compari-
son with their respective twin siblings. All of these assays
employed an experimental design in which RNA from
twin siblings were cohybridized on two-color spotted
microarrays containing 39,936 human cDNA elements.
Each microarray experiment involved dye-reversal repli-
cates, and was performed in duplicate or, in one case, trip-
licate for the different sets of twins. The mean log2ratios of
each gene from the dye-reversal replicates were used for
statistical analyses of the biological replicates.

Principal components analysis (PCA) of the combined
microarray data with respect to samples from the 3 dis-
cordant twin sets showed that genotype is responsible for
the major portion of the variation in differential gene
expression, reflecting the expected transcriptome hetero-
geneity among unrelated individuals (see Additional file
1). The microarray data from the 3 sets of discordant twins
was analyzed using SAM in order to identify genes that
were significantly different from log2 = 0 across the biolog-
ical replicates (n = 3). Twelve hundred genes were identi-
fied as significant with an FDR of 26%. Twenty-five genes
were found to be up-regulated at least 1.5-fold in the more
severely affected twin relative to the other twin

(log2(ratio) = 0.58) and 19 genes were down-regulated by
at least 1.5-fold (Table 1). Of these, eight of the 26 known
genes (representing six unique genes) correspond to genes
involved in neurological development, function, or dis-
ease. Because of this surprising finding, we used quantita-
tive RT-PCR (qPCR) to confirm the differential expression
of these specific genes (identified by boldtype in Table 1),
as well as several with no known neuronal functions. As
shown in Table 1, qPCR confirmed the relative expression
levels of all but one of the tested genes, including neuro-
logically relevant argininosuccinate synthetase (ASS), cell
death-associated kinase (DAPK1), 5-lipoxygenase-activat-
ing protein (ALOX5AP or FLAP), interleukin-6 signal
transducer (IL6ST), and Roundabout homolog 1 precur-
sor (ROBO-1), as well as 3 of the "non-neuronal" genes
including clotting factor XIIIa (F13A1), eukaryotic transla-
tion initiation factor 2C (EIF2C,2), and SAM domain,
SH3 domain and nuclear localization signals,1
(SAMSN1).

Moreover, when the expression profile of cells from the
autistic twin was directly compared against that of his
respective normal sibling in a dye-reversal microarray
experiment, neurologically relevant genes represented 3
of the top 5 most differentially expressed genes (Table 2).
Interestingly, the mean log2(ratio) of each of these, ASS,
CHL1, and FLAP, are higher for the autistic twin than for
the more mildly affected twin when each is compared
against their respective normal sibling, suggesting a quan-
titative relationship between differential gene expression
(relative to normal individuals) and severity of autistic
symptoms, at least for these specific genes. These quanti-
tative differences have also been confirmed by qPCR anal-
yses.

Network prediction analysis shows interconnected 
pathways involving differentially expressed, neurologically 
relevant genes centered around inflammatory mediators
Network prediction analysis using Ingenuity Pathways
Analysis Software of the 1200 significant genes from the
SAM analysis further revealed that 25 out of 58 network
focus genes exhibiting a differential expression = ± 1.5-
fold (i.e., log2(ratio) greater than ± 0.58) in at least one
discordant twin set are involved in neurological function
or disease (Table 3). This expression cutoff was selected
because of reports in the literature suggesting that 1.47-
fold increases or decreases in gene expression are generally
reproducible when Lowess normalization is used [27],
and our own ability to confirm expression changes of at
least 1.5-fold by qPCR. Of particular note is the gene net-
work that is derived from pathway analysis of the mean
expression values (with log2 ratio ≥ ± 0.58) across 3 sets of
discordant twins which shows that the majority of signif-
icantly differentially expressed genes are part of an
extended network centered on TNF and other inflamma-
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Table 1: Significant up- and down-regulated genes from SAM analysis of microarray experiments on 3 sets of monozygotic twins 
discordant for autism diagnosis with log2(ratio) ≥ ± 0.58

Genbank# Gene name or description Mean log2(ratio)* qPCR¥

Upregulated (log2(ratio) ≥ 0.58)
R45254 Unknown protein 1.19
AA448599 F13A1, clotting factor XIIIa precursor 1.08 1.05
AA676466 ASS, argininosuccinate synthetase (aa 1–412) 0.92
AA992985 Unknown protein 0.88
AA676405 ASS, argininosuccinate synthetase (aa 1–412) 0.85 1.47
W07099 NAGLU, N-acetylglucosaminidase, alpha 0.85 -0.28
AA044267 P2X5a 0.80
T49652 FLAP, ALOX5AP 0.79 1.01
H57830 histone H1(0) (aa 1–194) 0.78
R00276 CD38 alt 0.76
AA488070 Unknown protein 0.75
W69399 histone H1(0) (aa 1–194) 0.74
H09567 PAG1 0.74
AA609189 Unknown protein 0.73
H02307 FLAP, ALOX5AP 0.70
N50114 PAG1 0.69
AI091671 Unknown protein 0.67
N70181 PLEKHG1 0.66
H24011 Homeodomain-like protein 0.64
AA412520 Unknown protein 0.63
AA521362 CR2 receptor 0.62
AI371096 DAPK1, death-associated protein kinase 1 0.62 0.65
T61343 IL6ST, IL6 signal tranducer, gp130 0.59 0.58
N29918 ZBTB10 0.59
T90067 EIF2C2 0.59 0.99

Downregulated (log2(ratio) ≤ -0.58)
T67053 IGLC2 -2.39
W73790 IGLL1 -2.00
H18423 Unknown protein -1.98
AA448157 CYP1B1 -0.95
AA644099 Unknown protein -0.89
AA933744 ECAT11 -0.84
AI018127 Unknown protein -0.83
AA451886 CYP1B1 -0.77
AA682565 Unknown protein from neuroblastoma -0.72
AI223429 Unknown protein -0.69
AA450353 ELMOD1 -0.69
AA873578 IGHG1 -0.67
R33402 SAMSN1 -0.67 -0.61
AA173755 ROBO1, roundabout 1 -0.66 -0.93
AA022886 retinal degeneration B beta -0.64
AA063573 SAMSN1 -0.64
H99699 mitochondrial aconitase -0.63
AI290663 CYBASC3 -0.60
AA449333 Rab22b -0.58

*Mean log2(ratio) of gene expression in lymphoblastoid cell lines from children exhibiting classic autism to cell lines from less affected monozygotic 
twin sibs. SAM analysis revealed 1200 significant genes with an FDR of 26.4%. Only genes for which microarray data is available for all 3 sets of twins 
are included in this table.
¥Mean log2(ratio) of qPCR data from 3 sets of monozygotic twins. Gene expression was analyzed in triplicate assays (or duplicate for F13A1, 
EIF2C2, and SAMSN1) and the mean log2(ratio) for each respective gene was averaged among the 3 sets of twins. Only one gene, NAGLU, out of 
the 9 tested from this table was not confirmed by qPCR, possibly because of suboptimal choice of primers for qPCR.
Genes in boldface type have been shown to be relevant to neurological development, structure, or function (See Table 3).
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tory mediators (Fig. 1). The neurological functions of 8 of
the genes in this network are described in Table 3, which
lists all of the network focus genes that exceed the differ-
ential expression cutoff (1.5-fold increase or decrease) in
at least 1 pair of twins. In comparing this list to that of
Table 1, it is clear that, aside from overlapping differen-
tially expressed genes across the 3 sets of twins, there are
network genes that are uniquely up- or down-regulated
within each of the twin pairs, as illustrated by Additional
file 2. The collective data from the above-mentioned
microarray and pathway analyses suggested a short list of
novel candidate autism susceptibility genes with reported
neurological functions for further evaluation.

Differential expression of autism candidate genes in 
"concordant" autistic twins
Expression analysis of autism candidate genes in LCL
from two sets of twins in which both individuals were diag-
nosed as autistic surprisingly showed differential expres-
sion of several of the candidate genes (Table 4). However,
in each case, the "concordant" autistic twin siblings were
found to be discordant with respect to severity of language
impairment based on each twin's scores on the Peabody
Picture Vocabulary Test (PPVT) (see Additional file 3 for
profile of subjects studied). Thus, when microarray data
from the more language-impaired twin (lower percentile
PPVT score) was compared relative to the less impaired
twin, the differential gene expression profile overlapped
with that which was obtained from the "discordant" twin
sets. This result underscores the importance of consider-
ing autistic phenotype and/or severity as a means of
reducing heterogeneity of gene expression in the search
for biomarkers of autism. Interestingly, as shown in Table
4, expression analysis of the candidate genes in cells from
monozygotic nonautistic twins demonstrated that two of
the genes, CHL1 and possibly ROBO1, were differentially
expressed. However, it is worth noting that this set of
"normal" twins has two autistic siblings. Thus, it is not
clear to what extent their gene expression profiles are
"normal" since autism exhibits strong genetic influences.
It is therefore possible that the differential expression of
these two neurologically relevant genes is not coinciden-

tal, but does not, by itself, meet the threshold for associa-
tion with an autistic phenotype. Alternatively, this result
might suggest that these genes are not involved in autism.
Clearly, this observation on only one set of normal twins
warrants future investigation preferably with twins with
no autism in their family background. At this time it is dif-
ficult to obtain normal monozygotic twins with no autis-
tic siblings from the AGRE repository which focuses
exclusively on collecting samples from pedigrees with
familial autism.

The serotonin transporter (5-HTT) gene is also 
differentially expressed in lymphoblastoid cells from 
monozygotic twins discordant in severity of autism and/or 
language impairment
To evaluate whether differential expression of the serot-
onin transporter (5-HTT), which is strongly implicated in
autism, can be detected in LCL from the autistic and non-
autistic twins, qPCR analyses were performed, as 5-HTT is
not represented on the microarray platform. Results indi-
cated that, while there is no difference in 5-HTT expres-
sion between the nonautistic twins, there is a significant
decrease in expression in the more severely affected twin
in all of the autistic twin pairs studied, as shown in Table
4. Reduced expression of 5-HTT in blood-derived cells
may explain hyperserotonemia in a subset of autistic indi-
viduals [28]. It should also be noted that a polymorphism
in the promoter region of 5-HTT which results in reduced
transcription of 5-HTT is a factor in anxiety-related traits
[29,30], common in autism. The present finding suggests
that LCL, or their precursor blood lymphocytes, may be
useful as reporter cells to evaluate neurologically relevant
gene expression differences between autistic and normal
individuals.

Network and global functional analyses of the pooled 
microarray data on monozygotic twins with autism 
highlight genes involved in nervous system development 
and function
Because of the observed relationship between severity of
symptoms and differential expression of candidate genes
across the 5 autistic twin pairs studied, SAM was applied

Table 2: Expression of ASS, CHL1, and FLAP in 2 sets of discordant monozygotic twins relative to expression levels in their respective 
normal siblings

Gene name Genbank # A1 M1 A2 M2

ASS AA676405 0.65 (0.81)* -0.13 (0.27) 1.77 (3.04) 0.18 (0.97)
CHL1 H15267 1.60 (1.64) 0.67 (1.39) 1.15 (0.78) 0.95 (0.60)
FLAP T49652 0.71 (1.10) 0.13 (0.77) 1.40 (1.45) -0.09 (-0.39)

Values are mean log2(ratio) measures of gene expression between a twin and his respective normal sibling, obtained by DNA microarray analyses 
with dye reversal replicates
* Values in parentheses are mean log2(ratio) measures obtained by triplicate qPCR analyses.
A = autistic twin as diagnosed by ADI-R scoresheet
M = more mildly affected twin who did not meet ADI-R criteria for autism
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Table 3: Network focus genes from Ingenuity Pathways Analysis meeting differential expression cutoff of log2(ratio) ≥ ± 0.58 (1.5-fold 
increase or decrease) in at least 1 set of twins.

GenBank # Gene Neurological function or disease*

Upregulated
T49652 ALOX5AP neuronal signaling; possibly neurodegenerative diseases
AA991590 APOC1
AA147170 ALS4 ataxia-ocular apraxia
AA676466 ASS involved in nitric oxide production
H21041 ATF3 extension of neurites
AA702350 AUTS2 Asperger's syndrome
AI341427 BCAT1
AA430367 CBS
R00276 CD38
AA283949 CDC14A
N67039 CDK6
H15267 CHL1 extension of neurites; organization of mossy fibers
AA521362 CR2
AA884403 CTF1 myelination, differentiation of neurons
AI371096 DAPK1 apoptosis of hippocampal neurons
W00789 DST coalignment of neurofilaments, projection of axons; dysmyelination
AA448599 F13A1 stroke
AA149640 FLT1 VEGF-induced release of nitric oxide
AA070902 GGA2
AI375302 HMGB1 extension of neurites
AI539460 IL7
AA406546 IL6ST myelination, development of motor neurons, retraction of dendrites
H09062 MLSTD1
W07099 NAGLU neurogenesis; vacuolation of neurons
AA598611 NR4A2 neurogenesis; metabolism of dopamine
AA707195 NTRK2 survival of Purkinje cells; apoptosis of neurons
AA044267 P2RX5
H09567 PAG possible role in chronic neuroinflammation
AA972337 PAWR
AA489629 PBEF1
AI016039 PLXNB2
R80217 PTGS2 activation of astrocytes; spatial memory in mice; apoptosis of neurons
AA495950 RRM2B
R27457 SLC38A2
AI091460 SOS1
N63153 SPRED1
AI040821 TERE1
AA970358 TSLP
Downregulated
AA779727 ADAM19 development of septum
R01732 AMPD3
AA478589 APOE quantity/morphology of neurons; neurite extension; learning in mice
AA984646 C7orf2
AA448157 CYP1B1
AA446027 EGR2 myelination; development of motor neurons; routing of axons
AA149096 HCK
AA620511 HSPA8
W73790 IGLL1
AI380522 ITGB7 chronic demyelinating disease
AA679503 KIF1B morphology and size of brain; neuron survival
AA029283 LARGE
T83159 LSP1
AI351740 LTB neurological disorder in rats
AA022886 PITPNC1
AI126054 PTK2
AA173755 ROBO1 axon guidance
AA457700 SCD neural regeneration
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to microarray data from all 5 sets of twins to identify genes
that were significantly up- or down-regulated across all
twin pairs, each pair of which exhibited differential sever-
ity with respect to language ability (Table 5). Once again,
pathway analysis of the differentially expressed significant
genes revealed an extended network centered on TNF and
other cytokines (including IL1B, IL4, and IL6, which was
highly expressed in the brain tissues of autistic individuals
[34]), connecting a number of neurologically relevant
genes (Fig. 2). Global functional analysis of the 1281 sig-
nificant differentially expressed genes from 5 pairs of
twins further shows that genes related to "nervous system
development and function" are among the most statisti-
cally significant, enriched genes across the 5 sets of twins
(Table 6).

In silico mapping of differentially expressed genes to 
chromosomal regions containing autism candidate genes 
or quantitative trait loci (QTL)
Although most of the differentially expressed genes iden-
tified in this study are novel candidate genes with respect
to autism, Table 7 shows that 6 out of 8 of the candidate
genes listed in Table 4 [and approximately half (55%) of
the differentially expressed genes listed in Tables 3 and 5
(see Additional file 4)] map within or close to chromo-
somal regions containing previously reported autism can-
didate genes (ACG) or recently identified QTL for
language and nonverbal communication. Interestingly, as
observed in Additional File 4 and Table 7 respectively, 32–
50% of the genes mapped in silico to autism susceptibility
or quantitative trait loci are located within language QTL
recently identified by Alarcon et al [59], perhaps reflecting
the differential severity of language impairment between
the co-twins in this study. This observation suggests that
the overlay of expression data onto genetic data allows
one to focus further genetic and functional analyses on
expressed, neurologically relevant genes that may relate to the
behavioral phenotype. Taken together with the network and
global functional analyses described above, these results
suggest that blood-derived cells may be useful as surro-
gates to screen for biomarkers for autism.

Discussion
These studies provide a novel approach to determining
candidate genes for autism through the use of peripheral
cell lines derived from individuals with ASD. The observa-
tions represent a model for the development of a diagnos-

tic screen for autism based on biomarker detection in
blood, which is an easily accessible tissue.

In this study, DNA microarrays containing ~40 K human
cDNA probes were utilized to examine differences in gene
expression profiles in LCL derived from 5 pairs of
monozygotic twins with ASD. Three sets of twins were dis-
cordant with respect to clinical diagnosis of autism, and 2
sets (with both co-twins diagnosed as autistic) differed
with respect to severity of language impairment. We spe-
cifically chose this experimental model (direct compari-
son of identical twins) because differential gene
expression in blood leukocytes from monozygotic twins
has been reported to be much more restricted than
between unrelated controls and, furthermore, the differ-
entially expressed genes exhibited "random variations",
showing no specific preference for any functional class
[22]. The most remarkable finding of this study is that glo-
bal functional analysis of the significant differentially
expressed genes in LCL from these 5 sets of twins identi-
fies "Nervous system development and function" as a top
"high level function" that is significantly enriched across
the 5 gene expression datasets (Table 6). Moreover, in sil-
ico mapping of our most differentially expressed genes
across as well as within the twin sets demonstrates that
many of these genes are located in or close to chromo-
somal regions previously identified as autism susceptibil-
ity loci by genetic analyses (Table 7 and Additional file 4).
Quantitative RT-PCR analysis has further confirmed the
differential expression of a subset of our novel candidate
genes in the majority of twin sets studied.

Several of these candidate genes and their associated gene
networks may provide insight into potential mechanisms
involved in the autistic phenotype(s). One of the striking
results of the pathway analyses is that a relatively large
number of the differentially expressed, neurologically rel-
evant genes are linked in networks that are centered on
genes involved in inflammation (see Figs. 1 and 2). The
network genes with reported neurological functions
include the proteins ASS, ALOX5AP (FLAP), CD44, CHL1,
DAPK1, EGR2, F13A1, FLT1, IL6ST, NAGLU, PTGS2, and
ROBO1 (See Table 3). The protein ASS regulates the rate-
limiting step involved in nitric oxide (NO) production
through regeneration of arginine from citrulline, a
byproduct of the nitric oxide synthetase (NOS) reaction
[31]. Since NO is a major signaling molecule in the brain

AA504211 TNFSF11
N68465 UAP1

Dataset included 1200 significant genes identified by SAM across three twin sets. FDR was 26.4%.
Genes in Boldfaced type are ones of neurological relevance.
*Descriptions of neurological functions were obtained from the Ingenuity Pathways Knowledge Base.

Table 3: Network focus genes from Ingenuity Pathways Analysis meeting differential expression cutoff of log2(ratio) ≥ ± 0.58 (1.5-fold 
increase or decrease) in at least 1 set of twins. (Continued)
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that has been implicated in several psychiatric disorders,
including autism [32], the increased expression of ASS
may be of potential relevance to the autistic phenotype.
ASS has also been shown to be induced in a rat model of
brain inflammation [33], which would be consistent with
the hypothesis that neural inflammation may play a role
in autism [34]. DAPK1, a cell death-associated serine/thre-
onine kinase which is involved in suppression of integrin
activity and disruption of matrix survival signals [35], is
also induced by inflammation [36]. Interestingly, the

expression of FLT1 (VEGF receptor 1) is also regulated by
inflammatory cytokines as well as by NO [37]. Further-
more, the fact that IL6ST (gp130) is increased in LCL from
the more severely affected twin, may complement previ-
ous observations that IL-6 is the most elevated inflamma-
tory cytokine in the middle frontal gyrus and anterior
cingulate gyrus of brain autopsy tissue from autistic indi-
viduals [34]. While upregulation of ASS, DAPK1, FLT1,
and IL6ST may be responses to inflammation, ALOX5AP
(FLAP) and PTGS2 (COX-2) mediate inflammation

Gene networks showing inter-relationship between differentially expressed genes in LCL from 3 discordant autistic twin sets using Ingenuity Pathways Analysis softwareFigure 1
Gene networks showing inter-relationship between differentially expressed genes in LCL from 3 discordant 
autistic twin sets using Ingenuity Pathways Analysis software. The over-expressed (red) and under-expressed (green) 
genes were identified as significant using SAM analysis (FDR = 26.4%) of microarray data across 3 twin pairs. The log2 expres-
sion ratio cutoff was set at ± 0.58 and was based upon the mean values for each gene. Genes within this network that have a 
reported role in nervous system development and function are marked with a "#" symbol and include: ASS, ALOX5AP (FLAP), 
DAPK1, F13A1, IL6ST, NAGLU, PTGS2, and ROBO1. Gray genes are present but do not meet expression cutoff.
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through the production of leukotrienes [38] and prostag-
landins [39]. Interestingly, 5-lipoxygenase, the target of
FLAP activation, has been implicated in aging and neuro-
degenerative diseases [40], as well as other psychiatric dis-
orders [41], including anxiety and depression, which are
frequently co-morbid conditions of autism, while a COX-
2 inhibitor, celecoxib, has been shown to have therapeutic
effects in major depression [42], further suggesting a role
for inflammatory processes in psychiatric disease. Collec-
tively, the potential involvement of these specific genes
that are associated with neurological function and disease
and their presence in pathways regulated by inflammatory
mediators lend further support to the neural inflamma-
tion model for autism [34], which may be also manifested
by immune dysfunctions commonly observed in autism
[43].

In addition to the possible role of genes involved in
inflammation, a review of the gene list in Table 3 suggests
several additional recurring biological themes among the
differentially expressed genes with neurological functions:
neuronal survival, neurite extension/guidance, and myeli-
nation. In this regard, altered expression of EGR2, the
most down-regulated gene across 5 twin sets, may be par-
ticularly significant (See Table 5 and Additional file 2).
EGR2 (Krox-20) is a transcription factor involved in the
development of the brain and peripheral nervous system,
routing of axons, and myelination [44,45]. Some of these
functions may be related to EGR2-mediated regulation of
ROBO1, which is involved in neuronal differentiation
and axon guidance [46,47], and integrin beta-7 (ITGB7)

which has been implicated in chronic demyelinating dis-
ease [48]. The expression levels of all three of these genes
are relatively reduced with increased severity of autism or
language impairment (Table 4). The involvement of cell
migration in the pathophysiology of autism is also impli-
cated by the altered expression of CHL1, a novel neural
cell adhesion molecule that is involved in neurite migra-
tion, outgrowth, connectivity, and survival. Deficiency in
CHL1 has been shown to be associated with mental and
motor impairments as well as with alterations in explora-
tory and emotional behavior in mice [49,50], characteris-
tics that are often associated with autism. However, the
effect of CHL1 overexpression, which we observe to be
associated with the more severe phenotype, has yet to be
determined. While the function of such neurologically rel-
evant genes in lymphoblastoid cell lines is unknown,
there is growing evidence that gene expression is under
genetic control in LCL, as well as in other cells, with one
study showing that 31% of the differential expression in
LCL among unrelated individuals was heritable [21].
Thus, it is reasonable to postulate that hereditary factors
that are responsible for the development of the autistic
brain might also be manifested in the LCL as differentially
expressed genes. If expression of these genes can be shown
to be consistently altered in LCL in case-control studies on
a larger sample of unrelated individuals, these cells, and
by inference their precursor blood lymphocytes, can
potentially be used as reporter cells for diagnosis of ASD.
While we have focused on differentially expressed genes
of neurological relevance in this study, it should be noted
that the biomarkers for autism in LCL or lymphocytes

Table 4: Relative expression of candidate genes in monozygotic "concordant" twin pairs with differential language impairment (PPVT 
percentile scores) and in normal twins

Candidate Gene Genbank # PPVT – 30/42* PPVT – 0.1/1 Discordant twins¥ Normal twins

ASS AA676405 0.03 (-0.26)# -0.01 (-0.69) 0.85 (1.47) 0.24 (0.54)
CHL1 H15267 1.83 (1.48) 1.99 (1.29) 0.56 (0.46) 1.40 (1.45)
IL6ST T61343 0.88 (1.33) 0.28 (-0.26) 0.59 (0.58) 0.37 (0.23)
IL6ST AA406546 1.02 (0.85) 0.34 (-0.14) 0.58 (0.61) 0.43 (0.47)
DAPK1 AI371096 -0.56 (-0.92) -0.49 (-1.05) 0.62 (0.65) -0.13 (-0.18)
FLAP T49652 1.18 (1.20) 0.28 (-0.25) 0.79 (0.58) -0.19 (-0.34)
ITGB7 AI380522 -1.12 (-1.13) -0.20 (-0.92) -0.56 (-0.76) 0.15 (0.04)
EGR2 AA446027 -2.02 (-3.10) -1.26 (-2.16) -0.40 (-0.79) -0.23 (-0.37)
ROBO1 AA173755 -0.13 (0.25) 0.41 (-0.18) -0.66 (-0.93) -0.45 (-0.80)

5-HTT¶ BC069484 NP¶ (-2.39) NP (-0.42) NP (-0.96) NP (-0.02)

*Values represent the mean log2(ratio) of gene expression from DNA microarray data from 2 sets of monozygotic autistic twins who both met 
criteria for autism by either ADOS or ADI-R diagnostic tests, but have differential language impairment as indicated by their respective PPVT 
percentile scores. Data from 2 separate dye-reversal microarray experiments were averaged for each twin set. For each pair of twins, microarray 
data from the twin with the lower PPVT score was used as the numerator in calculating the gene expression ratio. PPVT – 30/42 refers to the twin 
pair whose PPVT percentile scores are 30 and 42, while PPVT – 0.1/1 refers to the twin pair whose percentile scores are 0.1 and 1. Interestingly, 
the two sets of twins share the same mother. The PPVT- 30/42 set are Caucasian males, as are the 3 sets of discordant twins, while the more 
severely language-impaired twins (PPVT -0.1/1) are black, Latino males.
#Values in parentheses are mean log2(ratio) expression measures obtained by triplicate qPCR analyses.
¥Mean expression value across 3 sets of twins discordant for diagnosis of classic autism.
¶Not present (NP) on microarray
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need not have specific neurological functions (as we have
also detected and confirmed differential expression of
"non-neuronal" genes). Given that ASD is most probably
a multigene disorder of varying etiology, a biomarker

screen for ASD would likely include a panel of genes con-
sistently associated with ASD phenotypes, in which diag-
nosis for the disorder will depend upon differential
expression of a defined percentage of genes within the
consensus set.

The observed relationship between differential gene
expression and severity of ASD between monozygotic
twins suggests a role for epigenetic factors in ASD. A recent
report on normal monozygotic twins indicates that epige-
netic differences arise over time, increasing with age and
with physical separation from each other after birth [45].
Indeed, epigenetic differences between monozygotic
twins have been examined as possible causes for discor-
dancy in schizophrenia as well as bipolar disorder [51-
53]. Possible epigenetic mechanisms leading to differ-
ences in gene expression include differential methylation,
differences in histone acetylation, and micro RNA,
although there is no available evidence linking any of
these to autism at this time. On the other hand, a muta-
tion in a methyl-CpG binding protein, X-linked MeCP2,
has been identified as being involved in 80% of all cases
of Rett Syndrome [54], a developmental disorder which
overlaps ASD, thus implicating the importance of methyl-
ation-dependent gene expression in at least this related
disorder. Interestingly, though ubiquitously expressed
[55], mutated MeCP2 induces a specific neuronal dys-
function, i.e., Rett Syndrome. One could therefore postu-
late that differential methylation or differential histone
acetylation might give rise to differential expression in
LCL from monozygotic twins with ASD and test for global
changes in methylation or histone acetylation as done by
Fraga et al [45], or for specific changes within a given can-
didate gene. Such epigenetic modifications in turn could
be in response to environmental factors, stochastic proc-
esses, or immortalization procedures, which can persist
even after the modifying stimulus (eg., inflammation) is
removed [56]. If present, these differences could be fur-
ther tested by evaluation of the methylation/acetylation
patterns of DNA/histones in primary lymphocytes from
monozygotic twins discordant in severity of autism or lan-
guage impairment within autism which, while interesting,
is beyond the scope of this study.

Regardless of origin, the gene expression differences
between monozygotic twins who present with differential
severity along the autism spectrum or within a specific
behavioral domain (eg., language) are potentially useful,
not only as biomarkers for ASD, but also as indicators of
genes or metabolic/signaling pathways that may contrib-
ute to the autistic phenotype. While our short list of can-
didate genes (Table 4) focuses on genes with known
neurological functions that are similarly up- or down-reg-
ulated across twin sets affected by ASD, the set of differen-
tially expressed, neurologically relevant genes that are

Table 5: Significant genes exceeding expression cutoff across 5 
sets of twins with ASD

Genbank# Gene name or description Mean 
log2 

(ratio)*

Upregulated (log2(ratio) ≥ 0.58)
AA448599 F13A1, clotting factor XIIIa precursor 1.50
H15267 CHL1, neural cell adhesion molecule 1.10
AA521362 CR2 receptor 1.07
R00276 CD38 alt 0.83
W07099 NAGLU, N-acetylglucosaminidase, alpha 0.77
T49652 FLAP, ALOX5AP 0.77
AA044267 P2X5a 0.76
R40400 CHL1, neural cell adhesion molecule 0.75
H09567 PAG1 0.71
AI400399 CYP7B1 0.70
AA149640 FLT1 0.67
H17800 Unknown protein 0.67
H02307 FLAP, ALOX5AP 0.67
AA917693 Unknown protein 0.66
AI017382 ATXN7L1 0.66
AI091671 Unknown protein 0.65
N50114 PAG1 0.65
H95977 Nmd protein, PLA1A 0.65
AA040389 Unknown protein 0.64
H24011 Homeodomain-like protein 0.64
AI275120 Unknown protein 0.63
AA708955 SCHIP1, schwannomin interacting protein 1 0.62
AA406546 IL6ST, IL6 signal transducer, gp130 0.62
R79082 PTPRK 0.59
AI241341 CHL1, neural cell adhesion molecule 0.59
T61343 IL6ST, IL6 signal transducer, gp130 0.59

Downregulated (log2(ratio) ≤ -0.58)
AA446027 EGR2, Krox-20 homolog -0.90
AA630734 seryl-tRNA synthetase -0.86
R47893 CCL3L1 -0.80
AA682565 Unknown protein from neuroblastoma -0.76
R78530 COTL1 -0.73
AA933744 ECAT11 -0.73
N58443 GPR55 -0.68
H99699 mitochondrial aconitase -0.64
H03494 CD44 -0.63
AA450353 ELMOD1 -0.63
AA458965 IL32, natural killer cell protein, transcript 4 -0.63
R33402 SAMSN1 -0.62
AA111969 CD83 antigen -0.60
AI380522 ITGB7, integrin beta-7 subunit -0.60
AA682637 CHST2 -0.59

*Mean log2(ratio)of gene expression across 5 sets of twins with ASD. 
SAM analysis revealed 1281 significant genes with a median FDR of 
15.6%. Only genes for which microarray data is available for all 3 sets 
of twins are included in this table. Genes in boldface type have been 
shown to be relevant to neurological development, structure, or 
function.
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unique to a given twin set may also be important to the
determination of a specific autistic phenotype. Indeed,
comparison of the pathways represented in the respective
datasets of individual twin pairs reveals not only overlap-
ping genes but also neurologically relevant genes that are
differentially expressed in only one of the twin pairs (see
Additional file 2). Inasmuch as our microarray analyses
directly compared genetically matched individuals who differ
only in degree of expression of autistic symptoms, it is
likely that other genes, not identified in our study, also
play a role in the pathophysiology of autism. This experi-
mental design possibly explains why the candidate genes
identified here are different from those reported by an ear-
lier genomic study [20] which compared autopsy brain
tissues from autistic and normal (nonautistic) controls
(i.e., case-control studies). On the other hand, it is inter-
esting that many of our novel genes map closely to genet-
ically identified autism susceptibility genes/loci or QTL
(Table 7 and Additional file 4).

Aside from identifying novel candidate genes for autism,
our study also illustrates the need for phenotype defini-
tion or subgrouping according to severity along a specific
behavioral domain for biological studies of autism. Spe-
cifically, the results show that the differential gene expres-
sion profiles of concordantly autistic twins with
differential severity of language impairment mirror some
of the differences in gene expression which are observed
in the twins with discordant diagnosis of autism, who also

exhibit differential language deficits. Thus, for case-con-
trol studies in which individuals from the general popula-
tion are compared against unrelated controls,
subgrouping the autistic individuals by phenotype or
stratifying them according to severity of symptoms may
provide more clarity in analyzing biological data. Towards
this goal, we have used several different clustering meth-
ods commonly used in DNA microarray analyses to divide
over 1300 autistic individuals into endophenotypic sub-
groups (eg., language, nonverbal communication, and
savant skills) based on item scores on the ADIR question-
naire (manuscript in preparation). Based on these meth-
ods, the twin siblings analyzed in this study, including
those who were both diagnosed as autistic, each fall into
different phenotypic clusters (unpublished data), with the
exception of one set of twins who were discordant in the
diagnosis of autism. These "endophenotypic" differences
may therefore account for some of the differences in gene
expression profiles between the twin siblings (i.e., co-
twins) as well as among the different sets of twins. To test
the ability of our clustering algorithm to restrict pheno-
typic and biological heterogeneity, we evaluated the short
list of candidate genes in Table 4 by qPCR in an additional
set of "concordant" autistic twins in which both co-twins
exhibit the severely language-impaired phenotype. Results
showed that, for this twin pair, there are no differences in
expression of the candidate genes exceeding a log2ratio of
± 0.58 (unpublished data).

Table 6: Global functional analysis: Enrichment of high level functions represented in datasets of differentially expressed genes across 5 
sets of monozygotic twins

High level function Significance� (× 102) of enrichment of top five high level functions

Twin sets

361/360 809/810 2369/2368 2595/2596 2597/2598

Nervous system development and 
function

0.008–3.85 (6/19)* 0.12–2.55 (3/7) 0.81–4.79 (5/33) 0.12–4.39 (12/50) 0.02–4.53 (7/26)

Tissue morphology 0.008–4.27 (8/19) NA¶ (0/7) 0.81–4.79 (8/33) 0.08–4.38 (18/50) 0.51–4.03 (4/26)
Cell death 0.01–4.27 (8/19) 3.74 (1/7) 0.09–4.79 (4/33) 0.18–4.65 (12/50) 0.09–4.53 (6/26)
Cellular development 0.01–4.27 (6/19) NA (0/7) 0.81–4.79 (4/33) 0.12–4.39 (8/50) 0.03–3.54 (6/26)
Immune and lymphatic system 
development and function

0.03–3.85 (9/19) NA (0/7) 0.81–4.79 (10/33) 0.33–4.39 (17/50) 0.19–4.03 (9/26)

Global functional analysis of differential gene expression across 5 sets of monozygotic autistic twins (each pair identified by blood sample numbers (eg., 
361/360) who are discordant with respect to severity of autism or language impairment) was performed using Ingenuity's Pathways Analysis 
Software.
� Significance calculated for each function is an indicator of the likelihood that the high level function is associated with the dataset by random 
chance. The p-value, which is calculated using the right-tailed Fisher's Exact Test, compares the number of user-specified genes of interest (in this 
case, differentially expressed genes with a log2(ratio) cutoff ≥ ± 0.58) that participate in a given function or pathway to the total number of 
occurrences of these genes in all functional/pathway annotations stored in the Ingenuity Pathways Knowledge Base. It is noteworthy that genes 
related to nervous system development and function rank first among the top 5 out of 74 high level functions identified in lymphoblastoid cell lines on the basis 
of differentially expressed genes across 5 sets of twins with autism spectrum disorders. The range of significance values for each high level function 
relates to the different significance values for specific subfunctions within the category.
*(number of differentially expressed genes in functional category/total number of differentially expressed network focus genes with identifiable "high 
level function" across 5 datasets)
¶ NA: no significance value for this function within the dataset for this pair of twins
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Gene networks showing inter-relationship between differentially expressed genes in lymphoblastoid cell lines from monozy-gotic twins discordant in severity of autism spectrum disorder and/or language impairmentFigure 2
Gene networks showing inter-relationship between differentially expressed genes in lymphoblastoid cell lines 
from monozygotic twins discordant in severity of autism spectrum disorder and/or language impairment. The 
over-expressed (red) and under-expressed (green) genes were identified as significant using SAM analysis (FDR = 15.6%) of 
microarray data across 5 twin pairs. The log2 expression ratio cutoff was set at ± 0.58 and was based upon the mean values for 
each gene. Differentially expressed genes within this network that have a reported role in nervous system development and 
function are marked with a "#" symbol and include: ALOX5AP (FLAP), CD44, CHL1, EGR2, F13A1, FLT1, IL6ST, ITGB7, and 
NAGLU. Gray genes are present but do not meet expression cutoff.
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Conclusion
In summary, our study indicates that LCL from genetically
identical autistic individuals who differ in severity of
autistic symptoms and/or language impairment exhibit
differential expression of genes relevant to neurological
development, structure, and function. Many of these
genes map to chromosomal regions previously identified
by genetic analyses as harboring autism susceptibility
genes or QTL, thus demonstrating the potential of com-
bined genomic-genetic analyses to prioritize autism can-
didate genes for further genetic and functional analyses.
In addition, a quantitative relationship is seen between
severity of symptoms and expression of several autism
candidate genes when twins with classic autism or with
milder autistic traits are compared against their respective
normal siblings. The finding that gene expression differ-
ences were also observed in cells from twins who were
both diagnosed as autistic, but who differed in severity in
language deficits, strongly suggests that autistic phenotype
as well as severity of symptoms must be considered in
gene expression studies on autistic individuals in order to
reduce biological heterogeneity due to these factors. Col-
lectively, these studies provide proof-of-principle that LCL
(and possibly their precursor peripheral blood cells) may
exhibit biomarkers relevant to autism, and further suggest
their potential usefulness as reporter cells in developing a
diagnostic screen for autism. While it is unlikely that
microarray studies on LCL will identify the etiology(ies)
of autism, this global approach to gene expression analy-
ses is expected to highlight molecular or pathway defects
related to the pathophysiology of the condition which, in
turn, can be targeted for drug therapies. Moreover, as
opposed to fixed autopsy tissues in which RNA may have
degraded, a live cell model can also be used to examine
the functional consequences of the genomic alteration(s)
and the efficacy of different pharmacological agents in
ameliorating the impaired function.

Methods
Cell lines and culture conditions
Lymphoblastoid cell lines (LCL) derived from lym-
phocytes of 5 pairs of monozygotic twins with ASD were
obtained from the Autism Genetic Resource Exchange
(AGRE; Los Angeles, CA) and cultured in DMEM with
15% fetal bovine serum and 1% penicillin-streptomycin.
Cell lines from normal siblings of 2 sets of twins were also
obtained for comparison of gene expression profile with
that of their respective autistic siblings. In addition, cell
lines from a set of non-autistic monozygotic twins were
also studied. All LCL were constructed and maintained by
the Cell Repository of the Department of Genetics at Rut-
gers University under contract from AGRE. To minimize
differences in gene expression due to culture and sample
workup conditions, all samples that underwent direct
comparison of gene expression profile were cultured and
harvested at the same time (3 days after passaging) using
the same medium preparation and RNA isolation rea-
gents.

Description of individual donors of cell lines
Additional file 3 provides a case description of all of the
subjects included in this study. In brief, all of the twin
pairs and normal siblings, with the exception of 1 set of
twins, were Caucasian males between the ages of 6 and 16
at the time that blood was drawn. The remaining set of
twins (age 12) was of mixed race (black, Hispanic) but
had the same mother as one of the Caucasian pairs of
autistic twins. For 3 sets of twins (designated "discordant"
twins), one twin of each pair met standard diagnostic cri-
teria for autism based on the Autism Diagnostic Interview-
Revised (ADIR) [13]. In each case, his co-twin, while not
clinically autistic, exhibited autistic traits and could be
considered to be on the autism spectrum. These co-twins
were described either as "Broad spectrum" or "Not quite
autistic (NQA)" by the AGRE repository according to cri-
teria established on the basis of ADI-R scores []. Gene
expression in cell lines from two of these twin pairs were
also directly compared against the gene expression profile
in cell lines from their respective "normal" sibling. Two of

Table 7: Differentially expressed candidate genes from microarray experiments mapped in silico to autism susceptibility genes and 
QTL

Candidate gene Genbank # Physical Location Reported closely mapped autism candidate genes or QTL* Ref

ASS AA676405 chr9 (130,349,862–130,406,214) dopamine beta-hydroxylase (9q34) 77
CHL1 H15267 chr3 (423,533–426,095) KIAA0121 (3p25.2) 75
IL6R-beta, gp130 T61343 chr5 (55,267,950–55,272,766) Language QTL chr5:40(0–67) 76
IL6ST AA406546 chr5 (55,271,809–55,272,305) Language QTL chr5:40(0–67) 76
DAPK1 AI371096 chr9 (87,552,642–87,553,099)
FLAP, ALOX5AP T49652 chr13 (30,207,643–30,236,962) AUTS3 (13q14-22), HTR2A-2 (serotonin recep. 2A) (13q14-21) 71, 72
ITGB7 AI380522 chr12 (51,871,361–51,887,333) arginine vasopressin receptor 1A (12q14-15) 69
EGR2 AA446027 chr10 (64,241,755–64,246,081) Language QTL chr10:107(72–126); HTR-7 76
ROBO1 AA173755 chr3 (78,729,082–78,729,496)
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the 5 sets of twins with ASD (designated "concordant"
twins) were examples in which both co-twins were diag-
nosed with autism, but who were discordant in severity of
language impairment, as indicated by their respective per-
centile scores on the Peabody Picture Vocabulary Test
(PPVT). The Autism Diagnostic Observation Schedule
(ADOS) [14] was used to diagnose one of these sets of
twins. None of the individuals whose cells were used pre-
sented with any co-morbid condition or mental retarda-
tion. All of the phenotypic data were obtained through the
AGRE databases [].

DNA microarray analyses
RNA was isolated from the LCL using TRIzol Reagent (Inv-
itrogen, CA) according to the manufacturer's protocol.
The RNA was further purified using Centricon YM-30 col-
umns and tested for purity on RNA 6000 NanoChips
using the Agilent 2100 Bioanalyzer. Labeled cDNA was
obtained by incorporation of 5-(3-aminoallyl)-2'deoxyu-
ridine-5'-triphosphate (Ambion, TX) during first-strand
synthesis, followed by coupling to the ester of cyanine
(Cy-3 or Cy-5) (Molecular Probes, OR) as appropriate
according to Standard Operating Protocol (SOP) M004
on The Institute for Genomic Research (TIGR) website [].
For two-color microarray analyses, the Cy5- and Cy3-
labeled cDNA from each pair of twins (or twin and nor-
mal sib) were co-hybridized using TIGR SOP M005 to
spotted microarrays (TIGR 40 K Human Set) containing
39,936 human cDNA probes which were obtained from
Research Genetics. Dye reversal (flip-dye) replicates were
included in all analyses, and at least 2 sets of replicates
were carried out for each pair of monozygotic twins. Gene
expression levels were derived from the scanned hybrid-
ized arrays using a combination of TIGR SpotFinder,
MIDAS, and MeV analysis programs which are all part of
the TM4 Microarray Analysis Software Package available
at the above-cited website. These programs have all been
previously described in detail [57]. Data analyses
included normalization using local LOWESS followed by
standard deviation regularization across individual subar-
rays, and flip-dye consistency checking for dye reversal
replicates as implemented in MIDAS [27,58]. The SAM
(Significance Analysis of Microarrays) module within
MeV was used to determine statistical significance of dif-
ferential gene expression and false discovery rate (FDR)
which corrects for multiple testing.

Quantitative RT-PCR
Total RNA (same preparations used in microarray analy-
ses) was reverse transcribed into cDNA using the iScript
cDNA Synthesis Kit (Bio-Rad, Hercules, CA). Briefly, 2 µg
of RNA were added to a 40 µl reaction mix containing
reaction buffer, magnesium chloride, dNTPs, an opti-
mized blend of random primers and oligo(dT), an RNase
inhibitor, and a MMLV RNase H+ reverse transcriptase.

The reaction was incubated at 25°C for 5 minutes fol-
lowed by 42°C for 30 minutes and ending with 85°C for
5 minutes. The cDNA reactions were then diluted to a vol-
ume of 100 µl with water. Real-time PCR was carried out
either on a 7900 HT Sequence Detection System from
Applied Biosystems using the iTaq SYBR Green Supermix
with ROX (Bio-Rad, Hercules, CA) or an Applied Biosys-
tems 7300 Real-Time PCR system using Invitrogen's
Superscript III Platinum SYBR Green Two-step qRT-PCR
Kit with ROX. Gene-specific primers at a final concentra-
tion of 200 nM and 1 µl of cDNA templates were com-
bined into 20 µl reaction mixes and run through 40 cycles
of PCR. Quantitation was performed using the Universal
18S rRNA primers (Ambion, Austin, TX) with samples
normalized to their 18S rRNA standard curves. Forward
and reverse primers are described in Additional file 5.

Network prediction analyses
Lists of differentially expressed genes identified as "signif-
icant" by SAM analysis of microarray data across different
sets of twins were analyzed using Ingenuity Pathways
Analysis (Ingenuity Systems, Inc.), a web-delivered appli-
cation that enables biologists to discover, visualize and
explore therapeutically relevant networks significant to
their specific experimental results (e.g., gene expression
array data sets). Specifically, a data set containing gene
identifiers (in this case, GenBank Accessions) and their
corresponding expression values were uploaded as an
Excel spreadsheet using the template provided in the
application. Each gene identifier was mapped to its corre-
sponding gene object in the Ingenuity Pathways Knowl-
edge Base. The gene list was filtered prior to analysis with
Ingenuity by using a log2(ratio) cutoff of 0.58. These genes
were then used as the starting point for generating biolog-
ical networks. The networks are displayed graphically as
nodes (genes/gene products) and edges (the biological
relationships between the nodes). Human, mouse, and rat
orthologs of a gene are stored as separate objects in the
knowledge base, but are represented as a single node in
the network. The intensity of the node color indicates the
degree of up- (red) or down- (green) regulation. When
networks from different samples are merged (as in Addi-
tional file 2), yellow node color denotes overlapping dif-
ferentially expressed genes from two or more samples.
Nodes are displayed using various shapes that represent
the functional class of the gene product, as described on
Ingenuity's website [].

Global functional analyses
Biological functions were assigned to the overall analysis
(across data from 5 monozygotic twin pairs) by using the
findings that have been extracted from the scientific liter-
ature and stored in the Ingenuity Pathways Knowledge
Base []. The biological functions assigned to the analysis
are ranked according to the significance of that biological
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function to the analysis. A Fisher's exact test is used to cal-
culate a p-value determining the probability that the bio-
logical function assigned to the analysis is explained by
chance alone. Again, a differential expression cutoff of
log2(ratio) ≥ ± 0.58 was used.

In silico mapping of differentially expressed genes
The physical locations of each of the significant differen-
tially expressed genes with log2(ratio) ≥ ± 0.58 were
obtained using TIGR's Resourcerer Gene Annotation Soft-
ware []. These locations were then compared manually to
those of autism candidate genes (ACG) or quantitative
trait loci (QTL) identified on the basis of published
genetic linkage and association studies [59-78]. For com-
parison, using Human Genome Build 35 and defining
genes as the collection annotated by Ensembl (a total of
24974), we have found that the set of non-redundant
genes mapping to the large, often overlapping autism sus-
ceptibility or QTL regions is 3838, or about 15.4% of the
total.

Submission of microarray data to GEO repository
The GEO accession number for all of the microarray data
is GSE4187.
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Additional material

Additional File 1
Principal components analysis of microarray data from the 5 sets of 
monozygotic twins with ASD, with each color representing a separate 
pair of twins. This figure shows that genotype is a major contributor to 
variations in overall gene expression profile. Each point on the graph rep-
resents a dye-reversal experiment on a given twin pair. Note that even the 
2 pairs of twins who share the same mother but have different fathers 
(pink and yellow points) are distinguishable from each other.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-7-118-S1.jpeg]

Additional File 2
A representative gene network showing overlap of some neurologically 
relevant genes among 3 discordant autistic twin sets using Ingenuity 
Pathways Analysis software. Genes shown in yellow represent overlap of 
differentially expressed genes in 2 or more sets of twins, whereas the red 
and green nodes correspond to genes that are up- or down-regulated, 
respectively, in only 1 twin set. The expression cutoff was set at log2(ratio) 
= ± 0.58 for each twin set. The 12 genes marked by "#" are known to be 
involved in nervous system development and function.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-7-118-S2.jpeg]

Additional File 3
Case description of subjects from whom LCL were derived and used in 
this study. (Self-explanatory)
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-7-118-S3.pdf]
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