www.nature.com/mp

REVIEW ARTICLE

Genetic tests of biologic systems in affective disorders

E Hattori^{1,2}, C Liu¹, H Zhu¹ and ES Gershon¹

¹Department of Psychiatry, The University of Chicago, Chicago, IL, USA; ²Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute (BSI), Wako, Saitama, Japan

To liberate candidate gene analyses from criticisms of inexhaustiveness of examination of specific candidate genes, or incompleteness in the choice of candidate genes to study for specific neurobiological pathways, study of sizeable sets of genes pertinent to each putative pathophysiological pathway is required. For many years, genes have been tested in a 'one by one' manner for association with major affective disorders, primarily bipolar illness. However, it is conceivable that not individual genes but abnormalities in several genes within a system or in several neuronal, neural, or hormonal systems are implicated in the functional hypotheses for etiology of affective disorders. Compilation of candidate genes for entire pathways is a challenge, but can reasonably be carried out for the major affective disorders as discussed here. We present here five groupings of genes implicated by neuropharmacological and other evidence, which suggest 252 candidate genes worth examining. Inexhaustiveness of gene interrogation would apply to many studies in which only one polymorphism per gene is analyzed. In contrast to whole-genome association studies, a study of a limited number of candidate genes can readily exploit information on genomic sequence variations obtained from databases and/or resequencing, and has an advantage of not having the complication of an extremely stringent statistical criterion for association.

Molecular Psychiatry (2005) 10, 719–740. doi:10.1038/sj.mp.4001695; published online 31 May 2005

Keywords: mood disorders; candidate genes; association; linkage disequilibrium; biologic pathways

Identifying susceptibility genes has long been challenging in studies of major affective disorders, as well as in other common complex diseases such as schizophrenia, asthma, diabetes, and cardiovascular diseases. Association study, which typically examines differences in allele frequency of a genetic marker between cases (affecteds) and controls, remains a major approach of disease gene mapping, and has been employed to examine possible roles of candidate genes in the etiology of a disease of interest.

Genomewide linkage analysis, in contrast, does not limit itself to a particular genomic region, apparently avoiding the risk of overlooking any genes with poor or even no information on biological functions. For more than two decades, linkage mapping has proven to be remarkably effective to guide researchers to numerous disease genes, each predisposing to a Mendelian trait. Also, development of computer algorithms for model-free linkage analysis has considerably facilitated appropriate genetic dissections of complex phenotypes with unknown mode of inheritance. In studies of major psychiatric illnesses, evidence of linkage has led to the detection of associations of specific genes with illness: dysbindin 1 $(DTNBP1)^1$ on chromosome 6p and neuregulin 1 (NRG1)² on 8p for schizophrenia, and G72/G30 on 13q for both schizophrenia³ and bipolar disorder.⁴ These genes have been demonstrated to be associated with schizophrenia and/or bipolar disorder in multiple independent data sets.⁵⁻⁸ However, model-free linkage analysis is unlikely to detect genes with very weak effects (modest increase in probability of illness, given the associated allele). This has led to a resurgence of association analysis because of its much higher statistical power, particularly in the studies of complex diseases, where multiple genes are considered to exert weak effect along with environmental factors.9

Candidate gene association studies have historically been plagued by nonreplication. A recent meta-analysis of genes that had a large number of association studies emphasized possible contribution of false-negative underpowered studies to inconsistent results, and suggested consistent weak effects of the genes for serotonin receptor 2A (HTR2A) and dopamine receptor D3 (DRD3) on susceptibility to schizophrenia.¹⁰ Thus, inconsistencies among reports may be consequences of what previous studies have failed to address. Until recently, it has only been feasible to interrogate a few genes in particular systems, and these interrogations have often been

Correspondence: Current address: Dr E Hattori, Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, 2-1 Hiro-sawa, Wako, Saitama 351-0198, Japan.

E-mail: ehattori@brain.riken.jp

Received 29 September 2004; revised 12 April 2005; accepted 2 May 2005

Molecular Psychiatry

limited to very few polymorphisms in a limited number of subjects, because of limitations in the costs of genotyping, and in the knowledge of the human genome. Advances in genomics and bioinformatics, in high-throughput genotyping, in statistical analysis, and in the availability of large samples of patients with well-defined phenotypes, as well as comparable numbers of matched controls, can be expected to enhance the likelihood of detection of valid associations.

What remains as the most serious concern about the paradigm of candidate gene association study is its 'incompleteness' resulting from ad hoc selection of candidate genes. A priori hypotheses have to be made on the primary cause of the disease being studied, when starting a candidate gene study. For many years, genes have usually been tested in a 'one by one' manner for association with major affective disorders, primarily bipolar illness. However, it is also conceivable that not individual genes but abnormalities in several genes within a system or in several neuronal, neural, or hormonal systems are implicated in the functional hypotheses for etiology of affective disorders. Analysis of entire systems examining a same sample set has only rarely been undertaken,^{11,12} and examples of definitive success have yet to be seen. At this time, analysis of a well-chosen and comprehensive set of candidate genes, with the support of informatics analysis of the genomic structure of each gene, may yield successful detection of specific genes and pathways associated with illness.

In the following sections, we first discuss the advantage of a hypothesis-based systematic association study on a limited number of candidate genes in contrast to the whole-genome association study, and subsequently demonstrate that, in the case of affective disorders, compilation of candidate genes pertinent to each major neurobiological system suggested for susceptibility can be reasonably carried out. The idea of testing systems can be generalized to studies of other common complex diseases.

Systematic candidate gene study vs whole-genome association study

Association studies are intended to capture linkage disequilibrium (LD) between genotyped markers and a disease causal variant, including when the marker being genotyped happens to be exactly the causal variant. Recent studies have revealed that chromosomal segments, spanning a few to hundreds of kilobases, can often be represented by only a few haplotypes because of strong underlying LD that associates specific alleles at each polymorphic site in the segment. Such a segment is called a 'haplotype block' and the analysis of a block can be achieved by typing a small set of SNPs (haplotype tag SNPs or htSNPs) that are most informative for discriminating haplotypes.^{13,14} The International HapMap project¹⁵ (see Electronic-Database Information) has just completed genotyping of a million SNPs in four different populations with the aim of providing information on genomic variations including the extent of LD, haplotype blocks and htSNPs. This modeling of genomic variations especially favors the idea of whole-genome LD mapping, which aims to locate disease susceptibility variants using a set of limited number of markers across the entire genome.

However, it is open to question how informative the limited number of SNPs can be in terms of sequence variations of the genome. First, it is unclear to what degree the entire genome can be captured by blocklike structures. Since haplotype blocks reflect underlying LD, whose extent varies considerably across the genome, short blocks may become evident only by highly dense genotyping. According to a simulation under a recombination hot-spot model by Wall and Pritchard,¹⁶ even genotyping with a marker density obtained by resequencing would capture only up to 71% of the entire genome as blocks. Besides, gene conversion, which is not incorporated into this model, seems to have generated discrepancies between haplotype block fractions observed in actual data and predicted by simulations. Gene conversion can give rise to a 'hole' in an LD or a haplotype block, and a susceptibility variant in such a hole is likely to be overlooked. Secondly, even when a haplotype block is evident, it is unclear if markers from the databases capture sufficient haplotype diversity. For example, a haplotype with an estimated frequency of 45% may really be a group of three haplotypes each with a frequency of 15%. This loss of information can substantially reduce the power of detecting association depending on the frequency of a causal variant. Selecting the most informative markers not depending on the haplotype block model, as suggested in Carlson *et al*,¹⁷ would considerably circumvent these problems. Resequencing of genomic regions of interest will also be necessary (see Electronic-Database Information for current examples). From the viewpoint of the number of SNPs to be genotyped, these approaches look feasible for a study of a limited number of candidate genes, but not for whole-genome LD mapping or for its gene-focused form.^{9,18,16}

Since the prior probability of association for a biologic candidate gene can be expected to be considerably higher than that for a gene randomly picked up from the genome, candidate gene approach may benefit from increased statistical power by analysis controlling 'false discovery rate'.20 Even in the conventional statistical tests (eg Bonferroni procedure) for multiple hypotheses, which control overall type I error rate, the study of limited number of candidates derived from a few hypotheses would not suffer from the complication of a very stringent statistical criterion for association, because the number of markers would be less than in a whole-genome LD mapping. Also, a method has recently been developed to detect a set of associated genes, which may statistically interact with each other.²¹ Interpretation of results of this analysis can be more

straightforward when we study multiple genes with known biologic functions. Thus, whole-genome association study does not replace the candidate gene approach using a sufficient number of informative markers, particularly when we are anxious about

Genetic testing of functional systems (pathways) in major affective disorders

missing associations.

Since the first monoamine hypothesis (Figure 1) of depression, based on biochemical pharmacology of antidepressants and reserpine, numerous hypotheses of dysregulation of functional systems in mood disorders have been suggested, but so far no consensus has been reached on any primary molecular mechanism underlying mood disorder susceptibility. Nonetheless, the choice of several systems (Table 1) over others for intensive genetic study can be supported by their relevance to clinical features as

Figure 1 Evolution of 'monoamine hypothesis'. A major hypothesis for the biology of depression was developed in the 1960s, initially proposing that depletion of norepinephrine (NE), and later proposing depletion of serotonin (5-HT) and dopamine (DA), underlie the illness.¹⁰⁰ This 'monoamine hypothesis' was proposed because of the clinical observation that depression often occurs in subjects taking reserpine, an antihypertensive agent, which depletes monoamines from the synaptic vesicles. Also, consistent with the hypothesis was that tricyclic antidepressants and MAO inhibitors were found to increase synaptic monoamine concentrations. The hypothesis was later modified to include alterations of monoamine receptor properties so that it would encompass an explanation for the time (usually days to weeks) required for an antidepressant to take clinical effect despite its immediate action to elevate synaptic monoamine levels.^{101,102} However, either the original or modified form of hypothesis has not been definitively demonstrated so far. Involvement of postsynaptic signaling is now of interest to researchers. A diagram for NE neurotransmission is shown as an example. The postsynaptic receptors for NE are coupled to guanine nucleotide binding proteins (G proteins), which transduce neurotransmitter stimulation to second messenger signaling systems such as cAMP and phosphoinositide pathways. Now that numerous components in the NE neurotransmission system have been identified, including metabolic enzymes, receptors, transporters, and postsynaptic signaling (eg one or more subtypes of G proteins, protein kinase A, protein kinase C, calcium/calmodulin-dependent protein kinases), emphasis is being placed on the broader view of dysregulation in the entire system,¹⁰³ taking interactions of each component into account. Components are presented at the gene level in Table 2. NE: norepinephrine; VMAT: vesicular monoamine transporters; MAO: monoamine oxidases, COMT: catechol-O-methyltransferase; ax-AR: axadrenerigc receptors; β 1-AR: beta-1-adrenergic receptor; G: G proteins; AC: adenylate cyclases; PL: phospholipases; PKA: cAMP-dependent protein kinases; PKC: calciumdependent protein kinases; CREB: cAMP-responsive element binding protein; NET: norepinephrine transporter; DAT: dopamine transporter.

well as by accumulated neurobiological and neuropharmacological findings.

Phenotypic subclasses of the entire spectrum of affective disorders may have different associations with the systems in Table 1. However, we need not assume too much about a specific relationship between systems and subclasses. When samples from different types of affective disorders with abundant clinical records are available, it may be more reasonable to conduct genetic analyses on numerous phenotypic variables after completion of genotyping. Such an approach has successfully been employed in detecting association between the *PDE4D* gene and ischemic type stroke in the analysis of all the samples from broadly defined common forms of stroke.²²

The first step of compiling candidate genes in a given functional hypothesis is to list genes involved in pathways which represent that hypothesis. GO and KEGG databases, for example (see Electronic-Database Information), help overview a set of genes involved in a particular intracellular pathway. To obtain information on genetic components specifically relevant to the phenotypes of interest, intensive literature survey or review is required. There have been a huge number of reports on specific proteins (sometimes specific subtypes) altered in post-mortem brains from bipolar disorder subjects or in brains from rodents treated with mood stabilizers. Also, animal models and systematic expression analyses by microarray or differential display assay provide information on molecules relevant to mood disorders not only at the protein level but also at the gene expression level.

Genetic tests of systems in affective disorders E Hattori et al

Systems	Subsystems or a group of genes to be analyzed
1. Neurotransmission systems	Monoaminergic neurotransmission (adrenergic, serotonergic and dopaminergic) Cholinergic neurotransmission Amino-acid neurotransmission (GAGAergic and glutamatergic) Other neurotransmitter or neuromodulator systems (peptidergic, opioid and others)
2. A neuroendocrine system	HPA axis
3. Neurotrophic and growth fact systems	Neurotrophic/growth factors and shared signaling pathways
4. Circadian rhythm	Clock genes (eg CLOCK, ARNTL1, ARNTL2, CRY1, CRY2) Pathways for entrainment to light/darkness cycle and outputs of suprachiasmatic nucleus (eg ADCYAP1, TGFA, PROK2)
 Genes implicated in pathophysiology of other diseases relevant to major affective disorders 	Parkinson's disease genes (eg PARK2, SCNA, UCHL1) Schizophrenia-related genes (eg NRG1, DTPN1) and genes in the myelination system (eg MBP, MOG, NRG1)

Table 1 Major neurobiological/neuropharmacological systems suggested for roles in major affective disorder

Genes repeatedly reported to be associated with the phenotype of interest should be included. In addition, databases being developed (see GEO and WebQTL in Electronic-Database Information) allow for retrieving and analyzing gene expression data according to researchers' particular interest, and may contribute to more extensive compilation of candidate genes in near future.

There are problems in this approach, though. First, manual literature mining on which compilation of candidate genes mostly depends is a tedious procedure. Secondly, there is no completely objective criterion to determine genes representing each hypothesis. Microarray studies may provide valid quantitative data on difference in expression level of each gene between bipolar and healthy subjects or between disease model and wild-type animals. However, such data may represent secondary effects of illness or treatment, or species-specific effects. Although a genetic association strategy can resolve this possibility, it will be a very small fraction of differentially expressed genes that directly affect susceptibility to the illness.

Despite these challenges, we have carried out compilation of a list of candidate genes pertinent to major hypotheses of major affective disorders (Table 2).

Neurotransmission systems

The monoamine (adrenergic, dopaminergic, and serotonergic) neurotransmission systems, which were the first to be hypothesized as systems whose derangements cause mood disorders, are offered here as a detailed example of candidate gene selection in the neurotransmission systems (see also Figure 1). The genes for tyrosine hydroxylase (TH), which is a rate-limiting enzyme for dopamine and norepinephrine synthesis, serotonin and transporter (SLC6A4), which is a pump molecule for reuptake of synaptic serotonin into the presynaptic nerve terminal, have been among the most frequently studied candidates for affective disorders. Abnormalities of these genes can lead to decreased vesicular or synaptic monoamine levels as predicted by the original monoamine hypothesis. However, association has not been consistently replicated for any genes for synaptic components including TH and SLC6A4.²³ Genes for synaptic components of monoamine systems, nonetheless, still deserve genetic analysis, given the possible insufficiency of sample size and number of markers analyzed in the previous studies. In the presynaptic nerve terminal, these include genes for synthetic enzymes (eg TH, DBH, DDC), synaptic vesicle monoamine transporters (SLC18A1 and SLC18A2), and reuptake transporters (SLC6A2, SLC6A3, and SLC6A4), with many being shared between the three neurotransmitters (Table 2). Monoamines bind to pre- and postsynaptic receptors, of which numerous subtypes have been found so far. The list includes seven genes coding for adrenergic receptors, five for dopaminergic receptors, and 14 for serotonergic receptors, omitting those with limited roles in the brain such as beta-2-adrenergic receptor (ADRB2). Genes for catabolic enzymes bound to postsynaptic membrane (monoamine oxidases (MAOA and MAOB) and catechol-O-methyltransferase (COMT)) have also been included in the list.

Abnormality in postsynaptic signaling in bipolar disorder was first proposed in the phosphoinositide cycle because it is affected by lithium administration.^{24,25} Myo-inositol monophosphatase is inhibited

Symbols	Genes	Aliases	Subcategories		Chromosomal region	Genomic size (bp)	References
. Neurotransm	5						
	neurotransmission						
ADRA1A	Alpha-1A-adrenergic receptor		Norepinephrine	Receptor	8p21.2	117256	104
ADRA1B	Alpha-1B-adrenergic receptor		Norepinephrine	Receptor	5q33.3	55762	
ADRA1D	Alpha-1D-adrenergic receptor		Norepinephrine	Receptor	20p13	27844	104
ADRA2A	Alpha-2A-adrenergic receptor		Norepinephrine	Receptor	10q25.2	3650	105, 106
ADRA2B	Alpha-2B-adrenergic receptor		Norepinephrine	Receptor	2q11.2	3266	
ADRA2C	Alpha-2C-adrenergic receptor		Norepinephrine	Receptor	4p16	2819	106, 107
ADRB1	Beta-1-adrenergic receptor		Norepinephrine	Receptor	10q25.3	1714	108
QDPR	Quinoid dihydropteridine reductase		5-HT	Metabolic enzyme	4p15.32	25691	
TPH1	Tryptophan hydroxylase 1		5-HT	Metabolic enzyme	11p15.1	19772	109, 110
TPH2	Tryptophan hydroxylase 2		5-HT	Metabolic enzyme	12q15	93 595	111,112
HTR1A	5-Hydroxytryptamine (serotonin) receptor 1A		5-HT	Receptor	5q12.3	1269	113
HTR1B	5-Hydroxytryptamine (serotonin) receptor 1B		5-HT	Receptor	6q14.1	1173	114
HTR1D	5-Hydroxytryptamine (serotonin) receptor 1D		5-HT	Receptor	1p36.12	2835	115
HTR1E	5-Hydroxytryptamine (serotonin) receptor 1E		5-HT	Receptor	6q15	78 988	
HTR1F	5-Hydroxytryptamine (serotonin) receptor 1F		5-HT	Receptor	3q11.1	1101	
HTR2A	5-Hydroxytryptamine (serotonin) receptor 2A		5-HT	Receptor	13q14.2	62 66 1	113
HTR2B	5-Hydroxytryptamine (serotonin) receptor 2B		5-HT	Receptor	2q37.1	15 587	116
HTR2D	5-Hydroxytryptamine (serotonin) receptor 2D		5-HT	Receptor	Xq23	326074	110
HTR3A	5-Hydroxytryptamine (serotonin) receptor 2C		5-HT	Receptor	11q23.2	15 195	117
HTR3B	5-Hydroxytryptamine (serotonin) receptor 3B		5-HT	Receptor	11q23.2 11q23.2	41 378	110
HTR4	5-Hydroxytryptamine (serotonin) receptor 35		5-HT	Receptor	5q32	41378 172618	119
HTR4 HTR5A	5-Hydroxytryptamine (serotonin) receptor 4 5-Hydroxytryptamine (serotonin) receptor 5A		5-HT 5-HT	Receptor	5q32 7q36.2	13 583	120
HTR5A HTR6	5-Hydroxytryptamine (serotonin) receptor 5A 5-Hydroxytryptamine (serotonin) receptor 6		5-HT 5-HT	1	7q36.2 1p36.13	13 583 14 276	
HTR5 HTR7			5-HT 5-HT	Receptor			
HTR7 SLC6A4	5-Hydroxytryptamine (serotonin) receptor 7 Solute carrier family 6 (neurotransmitter	ז זיקייקי	5-HT 5-HT	Receptor	10q23.31	115 268	101
SLC6A4	Solute carrier family 6 (neurotransmitter transporter, serotonin), member 4	HTT SERT	5-111	Transporter	17q11.2	24 118	121
	transporter, serotonini), member 4	SEK I					
ABCG1	ATP-binding cassette subfamily G member 1		5-HT	Others	21q22.3	77974	122
DBH	Dopamine beta-hydroxylase precursor		Dopamine	Metabolic enzyme	9q34.2	22 982	123
DRD1	D1 dopamine receptor		Dopamine	Receptor	5q35.2	3127	124
DRD2	D2 dopamine receptor		Dopamine	Receptor	11q23.2	65 577	125
DRD3	D3 dopamine receptor		Dopamine	Receptor	3q13.31	50 200	126
DRD4	D4 dopamine receptor		Dopamine	Receptor	11p15.5	3400	120
DRD5	D5 dopamine receptor		Dopamine	Receptor	4p16.1	2032	
NR4A2	Nuclear receptor subfamily 4, group A,	NURR1	Dopamine	Others	2q24.1	8250	128
	member 2		r	outer	=~1=	0===	
DDC	DOPA decarboxylase		Multiple	Metabolic enzyme	7p12.2	102610	129
			monoaminergic	-	T		
			systems				
MAOA	Monoamine oxidase A		Multiple	Metabolic enzyme	Xp11.3	70206	130
1011101-			monoaminergic	mousen:	···P····	/0100	10-
			systems				
MAOB	Monoamine oxidase B		Multiple	Metabolic enzyme	Xp11.3	115 765	
MINOL	Monoalillie oxidase B		monoaminergic	Without outrying	vh11.0	110700	
			systems				

Table 2Candidate genes pertinent to each putative pathological system: 1. Neurotransmission; 2. A neuroendocrine system; 3. Neurotrophic/growth factor systems; (1–3)Intracellualr signaling largely shared by 1–3; 4. Circadian rhythm; 5. Genes implicated in the pathophysiology of other disease relevant to major affective disorders

Table 2	Continued

Symbols	Genes	Aliases	Subcategories		Chromosomal region	Genomic size (bp)	<i>References</i> ^a
TH	Tyrosine hydroxylase		Multiple monoaminergic	Metabolic enzyme	11p15.5	7887	131, 132
COMT	Catechol-O-methyltransferase		systems Multiple monoaminergic systeme	Metabolic enzyme	22q11	27 047	133
SLC6A2	Solute carrier family 6 (neurotransmitter transporter, noradrenalin), member 2	NET	systems Multiple monoaminergic systems	Transporter	16q12.2	46 031	
SLC6A3	Solute carrier family 6 (neurotransmitter transporter, dopamine), member 3	DAT	systems Multiple monoaminergic systems	Transporter	5p15.33	52637	134, 135
<u>SLC18A1</u>	Solute carrier family 18 (vesicular monoamine), member1	VMAT1	Multiple monoaminergic systems	Vesicular transporter	8p21.3	38 346	64
SLC18A2	Solute carrier family 18 (vesicular monoamine), member2	VMAT2	Multiple monoaminergic systems	Vesicular transporter	10q26.11	36 203	136
	ırotransmission						
CHAT CHRNA3	Choline acetyltransferase Cholinergic receptor, nicotinic, alpha polypeptide 3		Metabolic enzyme Receptor		10q11.23 15q24.3	56010 25 679	137, 138
CHRNA4	Cholinergic receptor, nicotinic, alpha polypeptide 4		Receptor		20q13.33	16 298	137, 138
CHRNA5	aipna polypeptide 4 Cholinergic receptor, nicotinic, alpha polypeptide 5		Receptor		15q24.3	27 806	137, 138
CHRNA6	Cholinergic receptor, nicotinic,		Receptor		8p11.21	15 857	137, 138
CHRNA7	alpha polypeptide 6 Cholinergic receptor, nicotinic, alpha polypeptide 7		Receptor		15q13.3	184 762	137, 138
CHRNB2	alpha polypeptide 7 Cholinergic receptor, nicotinic,		Receptor		1q22	8827	137, 138
CHRNB3	beta polypeptide 2 Cholinergic receptor, nicotinic, beta polypeptide 3		Receptor		8p11.21	39290	137, 138
CHRM1 CHRM2 CHRM4	Cholinergic receptor, muscarinic 1 Cholinergic receptor, muscarinic 2 Cholinergic receptor, muscarinic 4		Receptor Receptor Receptor		11q12.3 7q33 11p11.2	1383 1401 1455	139 44
	urotransmission						
GABRA1	Gamma-aminobutyric acid (GABA) A receptor, alpha 1		GABA	Receptor	5q34	50 180	140
GABRA2 GABRA3 GABRA5 GABBR1 SLC6A1	Gamma-aminobutyric acid A receptor, alpha 2 Gamma-aminobutyric acid A receptor, alpha 3 Gamma-aminobutyric acid A receptor, alpha 5 Gamma-aminobutyric acid B receptor 1 Solute carrier family 6 (neurotransmitter		GABA GABA GABA GABA GABA	Receptor Receptor Receptor Receptor Transporter	4p12 Xq28 15q12 6p22.1 3p25.3	140 186 283 210 34 408 30 856 21 553	141–143 141, 142 141, 142 144 145–147

SLC6A11	Solute carrier family 6 (neurotransmitter transporter, GABA), member 11	GAT1	GABA	Transporter	3p25.3	122230	145
SLC6A12	Solute carrier family 6 (neurotransmitter	BGT1	GABA	Transporter	12p13.33	23 241	145
	transporter, betaine/GABA), member 12		CADA	TT I	00 44 00	4007	4.40
VIAAT	Vesicular inhibitory amino-acid transporter		GABA	Transporter	20q11.23	4887	148
DBI	Diazepam binding inhibitor (GABA receptor modulator, acyl-Coenzyme A binding protein)		GABA	Others	2q14.2	4975	
GAD2	Glutamate decarboxylase 2	GAD65	Glutamate	Metabolic enzyme	10p12.1	87 894	149
CAD:		CADo-	GABA				
GAD1	Glutamate decarboxylase 1	GAD67	Glutamate GABA	Metabolic enzyme	2q31.1	25 848	149, 150
ABAT	4-Aminobutyrate aminotransferase precursor	GABA-T	Glutamate GABA	Metabolic enzyme	16p13.2	109 987	151
GLRA3	Glycine receptor, alpha 3		Glutamate	Receptor	4q34.1	186 168	152
GLRB	Glycine receptor, beta		Glutamate	Receptor	4q32.1	95 517	152
GRIA1	Glutamate receptor, ionotropic, AMPA 1		Glutamate	Receptor	5q33.2	364 262	153
GRIA2	Glutamate receptor, ionotropic, AMPA 2		Glutamate	Receptor	4q32.1	143 068	
GRIA3	Glutamate receptor, ionotropic, AMPA 3		Glutamate	Receptor	Xq25	304 502	
GRIA4	Glutamate receptor, ionotrophic		Glutamate	Receptor	11q22.3	368731	
GRIK1	Glutamate receptor, ionotropic kainate 1		Glutamate	Receptor	21q21.3	402 421	
GRIK2	Glutamate receptor, ionotropic kainate 2		Glutamate	Receptor	6q16.3	669 205	
GRIK3	Glutamate receptor, ionotropic kainate 3		Glutamate	Receptor	1p34.3	233 113	
GRIK4	Glutamate receptor, ionotropic kainate 3 Glutamate receptor, ionotropic kainate 4		Glutamate	Receptor	11q23.3	325 942	154
GRIK5	Glutamate receptor, ionotropic kainate 5		Glutamate	Receptor	19q32.2	64 020	104
GRIN1	<i>N</i> -methyl-D-aspartate receptor subunit		Glutamate	Receptor	9q34.3	28 919	155
GRINI	zeta 1 (precursor)		Giutainate	Receptor	9494.9	20 91 9	155
GRIN2A	<i>N</i> -methyl-D-aspartate receptor subunit 2A		Glutamate	Receptor	16p13.2	421 920	156
GRIN2B	<i>N</i> -methyl-D-aspartate receptor subunit 2 <i>R</i>		Glutamate	Receptor	12q13.1	418 909	150
GRIN2D GRIN2C	<i>N</i> -methyl-D-aspartate receptor subunit 2D <i>N</i> -methyl-D-aspartate receptor subunit 2C		Glutamate	Receptor	17q25.1	18 802	
GRIN2C			Glutamate				157
	N-methyl-D-aspartate receptor subunit 2D			Receptor	19q13.33	49262	157
GRM1	Glutamate receptor, metabotropic 1		Glutamate	Receptor	6q24.3	408316	150
GRM2	Glutamate receptor, metabotropic 2 precursor		Glutamate	Receptor	3p21.31	9131	158
GRM3	Glutamate receptor, metabotropic 3 precursor		Glutamate	Receptor	7q21.12	220113	158
GRM4	Metabotropic glutamate receptor 4		Glutamate	Receptor	6p21.31	111816	
GRM5	Glutamate receptor, metabotropic 5		Glutamate	Receptor	11q14.3	540 352	159
GRM6	Glutamate receptor, metabotropic 6 precursor		Glutamate	Receptor	5q35.3	16793	
GRM7	Glutamate receptor, metabotropic 7		Glutamate	Receptor	3p26.1	880272	160
GRM8	Metabotropic glutamate receptor 8 precursor		Glutamate	Receptor	7q31.33	804658	
SLC1A1	Solute carrier family 1 (neuronal/epithelial high affinity glutamate transporter, system Xag), member 1	EAAT3	Glutamate	Transporter	9p24.2	96815	161–163
SLC1A2	Solute carrier family 1 (glial high-affinity glutamate transporter), member 2	EAAT2	Glutamate	Transporter	11p13	158 150	161–163
SLC1A3	Solute carrier family 1 (glial high-affinity	EAAT1	Glutamate	Transporter	5p13.2	81750	161-163
	glutamate transporter), member 3			I.	1		
SLC1A6	Solute carrier family 1 (high-affinity aspartate/	EAAT4	Glutamate	Transporter	19p13.12	22740	161, 163
	glutamate transporter), member 6			1	1		
SLC6A9	Solute carrier family 6 neurotransmitter transporter, glycine), member 9	GLYT1	Glutamate	Transporter	1p34.1	25 587	164
DAO	D-amino-acid oxidase		Glutamate	Metabolic enzyme	12q24.11	20831	3
SRR	Serine racemase		Glutamate	Metabolic enzyme	1		3 165
JIXIX	Serine racelliase		Giutaillate	metabolic enzyme	17p13.3	21 306	100
	smitter or neuromodulator systems						
			_				
ther neurotrans <u>AVP</u> AVPR1A	Arginine vasopressin–neurophysin II Arginine vasopressin receptor 1A		Peptide Peptide	Transporter Receptor	20p13	2873	166 166

Table 2 Continued

ymbols	Genes	Aliases	Subcategories		Chromosomal region	Genomic size (bp)	References
CCK	Cholecystokinin		Peptide	Neurotransmitter Intercellular signaling	3p22.1	6802	
CCKAR	Cholecystokinin A receptor		Peptide	Receptor	4p15.2	9025	
CCKBR	Cholecystokinin B receptor		Peptide	Receptor	11p15.4	12 202	
HCRT	Orexin precursor		Peptide	Neurotransmitter Intercellular signaling	17q21.2	1393	167
HCRTR1	Orexin receptor 1		Peptide	Receptor	1p35.2	8074	167
HCRTR2	Orexin receptor 2		Peptide	Receptor	6p12.1	108 347	167
NPY	Neuropeptide Y		Peptide	Neurotransmitter Intercellular signaling	7p15.3	417	168
NPY1R	Neuropeptide Y receptor Y1		Peptide	Receptor	4q32.2	2797	168
NPY2R	Neuropeptide Y receptor Y2		Peptide	Receptor	4q32	1152	168
NPY5R	Neuropeptide Y receptor Y5		Peptide	Receptor	4q32	4165	
NTS	Neurotensin		Peptide	Neurotransmitter Intercellular signaling	12q21.31	8689	169
NTSR1	Neurotensin receptor 1		Peptide	Receptor	20q13.33	53 934	169
JTSR2	Neurotensin receptor 2		Peptide	Receptor	2p25.1	12121	169
SST	Somatostatin		Peptide	Neurotransmitter Intercellular signaling	3q27.3	1227	
CAC1	Tachykinin, precursor 1		Peptide	Neurotransmitter Intercellular signaling	7q21.3	8408	
ГACR1	Tachykinin receptor 1		Peptide	Receptor	2p12	150044	
ACR2	Tachykinins receptor 2		Peptide	Receptor	10q22.1	11498	
ACR3	Tachykinins receptor 3		Peptide	Receptor	4q24	130 349	170
<u>'IP</u>	Vasoactive intestinal peptide		Peptide	Neurotransmitter Intercellular signaling	6q25.2	8857	
/IPR2	Vasoactive intestinal peptide receptor 2	VPAC2	Peptide	Receptor	7q36.3	116783	66
PMCH	Pro-melanin-concentrating hormone		Peptide	Neurotransmitter Intercellular signaling	12q23.2	1364	52
GPR24	G-protein-coupled receptor 24	MCHR1	Peptide	Receptor	22q13.2	3582	52
PDYN	Beta-neoendorphin—dynorphin preproprotein		Peptide	Neurotransmitter Intercellular signaling	20p13	15 300	171
OPRD1	Opioid receptor, delta1		Opioid	Receptor	1p35.3	51552	
DPRK1	Opioid receptor, kappa1		Opioid	Receptor	8q11.23	21771	
DPRM1	Opioid receptor, kappa1		Opioid	Receptor	6q25.2	80118	
ADORA1	Adenosine A1 receptor		Others	Receptor	1q32.1	76750	172
DORA2A	Adenosine A2a receptor		Others	Receptor	22q11.23	9234	
DORA2B	Adenosine A2b receptor		Others	Receptor	17p12	30 980	
ADORA3	Adenosine receptor A3		Others	Receptor	1p13.2	4689	62

HPA axis						
POMC	Proopiomelanocortin	АСТН	Neurotransmitter Intercellular eigneling	2q23.3	7665	
CRH	Corticotropin-releasing hormone precursor		signaling Neurotransmitter Intercellular	8q13.1	2080	
CDUD4	Continutor in adapting homeone according 1		signaling	17-01-01	54 595	
CRHR1 CRHR2	Corticotropin-releasing hormone receptor 1 Corticotropin-releasing hormone receptor 2		Receptor Receptor	17q21.31 7p14.3	51 525 29 697	
MC2R	Melanocortin 2 receptor (adrenocorticotropic		Receptor	18p11.21	894	173
	hormone)			1		
NR3C1	Nuclear receptor subfamily 3, group C,	(Glucocorticoid	Receptor	5q31.3	123 763	174
NIDoCo	member 1	receptor)	D. I	4 04 00	000.004	454
NR3C2	Nuclear receptor subfamily 3, group C, member 2	(Mineralocorticoid receptor)	Receptor	4q31.23	363 604	174
MC4R	Melanocortin 4 receptor	receptor)	Receptor	18q21.32	999	52
HSPA5	Heat shock 70 kDa protein 5 (glucose-regulated	GRP78	Others	9q33.3	6478	175
	protein, 78 kDa)					
SERPINA6	Corticosteroid binding globulin precursor	CBG	Others	14q32.13	19088	55
ABCB1 HSD11B1	ATP-binding cassette subfamily B member 1 11-Beta-hydroxysteroid dehydrogenase 1	ABCB1	Others Enzyme	7q21.12	209617 48 746	55 56
	11-Deta-flydroxysterord defrydrogenase 1		Enzyme		40740	50
Neurotrophic/grow	vth factor systems					
BDNF	Brain-derived neurotrophic factor		Neurotransmitter	11p14.1	63 295	39, 60, 61
			Intercellular			
ECE	Fridewood month forten		signaling	4-05	00.070	170
EGF	Epidermal growth factor		Neurotransmitter Intercellular	4q25	99370	176
			signaling			
FGF2	Fibroblast growth factor2		Neurotransmitter	4q27	71528	
			Intercellular			
10114	T 1' 1'1 (1 C , T		signaling	10.00.0	04.040	
IGF1	Insulin-like growth factor I		Neurotransmitter Intercellular	12q23.2	84 649	62
			signaling			
TGFB1	Transforming growth factor, beta 1		Neurotransmitter	19q13.2	23561	177
			Intercellular	1		
			signaling			
IGF1R	Insulin-like growth factor 1 receptor precursor	T-l-D	Receptor	15q26.3	308 747	178
NTRK2 NTRK3	Neurotrophic tyrosine kinase, receptor, type 2 Neurotrophin receptor 3	TrkB	Receptor Receptor	9q21.33 15q25.3	352 717 379 607	62
MIRKS	Neuronophini receptor 5		Receptor	15425.5	373007	02
	r signaling largely shared by 1-3					
ADCY2	Adenylate cyclase 2		cAMP signaling	5p15.31	433 850	179
ADCY9 ADRBK2	Adenylate cyclase 9 Beta adrenergic receptor kinase 2	GRK3	cAMP signaling cAMP signaling	16p13.3	150 555	180 62
CREB1	CAMP-responsive element binding protein 1	GING	cAMP signaling	22q12.1 2q33.3	158 971 68 897	62 35, 179
CREM	CAMP-responsive element modulator		cAMP signaling	10p11.21	84 983	36, 179
GNAI2	Guanine nucleotide binding protein		cAMP signaling	3p21.31	22633	33
GNAL	Guanine nucleotide binding protein		cAMP signaling	18p11.21	129640	181
	(G protein), alpha-activating activity			· · · ·		
	polypeptide, olfactory type					

Table 2 Continued

<i>symbols</i>	Genes	Aliases	Subcategories	Chromosomal region	Genomic size (bp)	References
GNAS	Guanine nucleotide binding protein (G protein), alpha-stimulating activity polypeptide 1 (LL)		cAMP signaling	20q13.32	71 451	33
PDE4A	Phosphodiesterase 4A, cAMP-specific		cAMP signaling	19p13.2	47 837	37, 182
PDE4B	Phosphodiesterase 4B, cAMP-specific		cAMP signaling	1p31.2	580 324	37, 183
PDE4D	Phosphodiesterase 4D, cAMP-specific		cAMP signaling	5q11.2	615565	184
PRKACA	Protein kinase, cAMP-dependent, catalytic, alpha		cAMP signaling	19p13.13	26045	185, 186
PRKAR2B	Protein kinase, cAMP-dependent, regulatory, type II, beta		cAMP signaling	7q22.3	116 687	185
RGS20	Regulator of G-protein signaling 20		cAMP signaling	8q11.23	78 299	187
RGS4	Regulator of G-protein signaling 4		cAMP signaling	1q23.3	5184	30, 73, 188
RGS7	Regulator of G-protein signaling 7		cAMP signaling	1q43	581608	179
PPP1R1B	Protein phosphatase 1, regulatory (inhibitor)	DARPP-32	cAMP signaling	17q12	9699	41
	subunit 1B		Calcium signaling	-		
PPP1R9B	Protein phosphatase 1 regulatory subunit 9B	Spinophilin	cAMP signaling	17q21.33	15 179	41, 189
	- • • •		Calcium signaling	*		
CAMK2A	Calcium/calmodulin-dependent protein kinase II alpha		cAMP signaling	5q33.1	70 277	39, 40, 19
	-		Calcium signaling			
CNN3	Calcium-activated potassium channel SK3	hSK3	Calcium signaling	1q22	162714	191
<u>MARCKS</u>	Myristoylated alanine-rich protein kinase C		Calcium signaling Phosphoinositide	6q21	4425	192
PRKCA	Protein kinase C, alpha		Calcium signaling Phosphoinositide	17q24.1	499979	192, 193
PRKCE	Protein kinase C, epsilon		Calcium signaling Phosphoinositide	2p21	532811	192, 193
PLA2G1B	Phospholipase A2, group IB (pancreas)		Calcium signaling Phosphoinositide Neurotrophic	12q24.31	5674	194, 195
PLCG1	Phospholipase C, gamma 1		factors Calcium signaling Phosphoinositide Neurotrophic	20q12	38 197	196
GNB3	Guanine nucleotide-binding protein beta-3		factors Calcium signaling cAMP signaling Phosphoinositide	12p13.31	7183	197, 198
BCL2	B-cell CLL/lymphoma 2		Neurotrophic factors	18q21.33	195352	199
DUSP6	Dual-specificity phosphatase 6		Neurotrophic factors	12q21.33	4023	200
MAP2K2	Mitogen-activated protein kinase kinase 2		Neurotrophic factors	19p13.3	33 805	64, 199
MAPK1	Mitogen-activated protein kinase 1		Neurotrophic factors	22q11.21	105 092	64, 193

AKT1	v-Akt murine thymoma viral oncogene		Neurotrophic		14q32.33	23 856	42, 43
	homolog 1		factors				,
	nomorog i		Phosphoinositide				
CNIAO	Guanine nucleotide binding protein		Phosphoinositde		0021.2	311 000	201
GNAQ	01		Filosphomositue		9q21.2	511000	201
0114.44	(G protein), q				40.40.0		
GNA11	Guanine nucleotide binding protein		Phosphoinositide		19p13.3	26 923	201
	(G protein), alpha 11 (Gq class)						
IMPA1	Inositol(myo)-1(or 4)-monophosphatase 1		Phosphoinositide		8q21.13	28365	
IMPA2	Inositol(myo)-1(or 4)-monophosphatase 2		Phosphoinositide		18p11.21	49422	26, 202
INPP5F	Inositol polyphosphate-5-phosphatase F		Phosphoinositide		10q26.12	103044	203
ITPKA	1D-Myo-inositol-trisphosphate 3-kinase A		Phosphoinositide		15q15.1	9624	203
ITPKB	Inositol-1,4,5-triphosphate-3 kinase B		Phosphoinositide		1q42.12	104439	203
PIB5PA	Phosphatidylinositol (4,5) bisphosphate		Phosphoinositide		22q12.2	11703	203
PIK3C2B	Phosphoinositide-3-kinase, class 2, beta		Phosphoinositide		1q32.1	67 707	203
TIKUGZD	polypeptide		1 hosphomositue		1402.1	07707	200
PIK3C3	Phosphoinositide-3-kinase, class 3		Phosphoinositide		18q12.3	126 246	203
PIK4CA	Phosphatidylinositol 4-kinase, catalytic, alpha				-		
PIK4CA			Phosphoinositide		22q11.21	131 028	203
DTD-I/- A	peptide						
PIP5K2A	Phosphatidylinositol-4-phosphate 5-kinase		Phosphoinositide		10p12.2	177663	203
	type						
KIAA0274	Sac domain-containing inositol phosphatase 3		Phosphoinositide		6q21	134167	203
SYNJ1	Synaptojanin 1		Phosphoinositide		21q22.11	96 978	204
4. Circadian rhy	thm						
<i>Clock genes</i>							
ARNTL	Aryl hydrocarbon receptor nuclear	BMAL1			11	109433	66
AKNIL		DMALI			11p15.3	109433	00
	translocator-like						
ARNTL2	Transcription factor BMAL2	BMAL2			12p11.23	87479	66
BHLHB2	Differentiated embryo chondrocyte expressed	1-Dec			3p26.1	5654	66
	gene						
aBHLHB3	Basic helix–loop–helix domain containing,	2-Dec			12p12.1	4886	66
	class B, 3						
CLOCK	Clock				4q12	114 338	66, 205
CRY1	Cryptochrome 1 (photolyase-like)				12q23.3	102 181	66
CRY2	Cryptochrome 2 (photolyase-like)				11p11.2	35 768	66
CSNK1D	Casein kinase 1, delta isoform 1				17q25.3	29 332	66
CSNK1E	Casein kinase 1 epsilon				22q13.1	25 461	66
PER1	Period 1				17p13.1	11 913	66
PER2	Period 2				2q37.3	44 407	66
PER3	Period 3				1p36.23	60475	66
TIMELESS	Timeless (Drosophila) homolog				12q13.3	32260	206
DBP	D site of albumin promoter (albumin D-box)				19q13.33	6642	66
NR1D1	Nuclear receptor subfamily 1, group D,	Rev-ErbAalpha			17q21.1	7933	66
	member 1	1			1		
Pathways for ent	rainment to light/darkness cycle and outputs of su	uprachiasmatic nucleu	S				
PROK2	Prokineticin 2	PK2	Clock output		3p13	13 406	73
GPR73L1	G-protein-coupled receptor 73-like 1	PKR2	Clock output		20p12.3	12 330	73
TGFA	Transforming growth factor alpha	· · · · · · · · · · · · · · · · · · ·	Clock output		2p13.3	106 512	72
EGFR	ERBB1		Clock output		7p11.2	137 918	72
AANAT			Clock output	Melatonin			14
	Arylalkylamine <i>N</i> -acetyltransferase				17q25.1	2549	207 200
MTNR1A	Melatonin receptor 1A		Clock output	Melatonin	4q35.2	22675	207-209

Table 2 Continued

	Genes	Aliases	Subcategories		Chromosomal region	Genomic size (bp)	<i>References</i> ^a
MTNR1B CRX OPN4	Melatonin receptor 1B Cone–rod homeobox Opsin4	Melanopsin	Clock output Photoreception Photoreception	Melatonin	11q14.3 19q13.33 10q23.2	13 160 5524 11 815	210, 208, 211 66 66
ADCYAP1 ADCYAP1R1	Adenylate cyclase-activating polypeptide Type I adenylate cyclase-activating polypeptide receptor	PACAP	Photoreception Photoreception		18p11.32 7p14.3	$5664 \\ 43503$	212, 213 69, 212
FYN GDI1	Protein-tyrosine kinase fyn GDP dissociation inhibitor 1				6q21 Xq28	212 143 6293	66 66
RAB3A NPAS2	RAB3A, member RAS oncogene family Neuronal PAS domain protein 2				19p13.11 2q11.2	7230 175 551	66 214
5. Genes implica Genes implicated	ted in pathophysiology of other diseases relevant <i>d in the pathophysiology of Parkinson's disease</i>	to major affective	disorders				
PARK2	Parkinson disease (autosomal recessive, juvenile) 2, parkin	PARK2			6q26	1 379 130	76
SNCA	Synuclein, alpha	PARKIN PARK1			4q22.1	111429	76
PNUTL1	Peanut-like 1	CDCREL1			4q22.1 22q11.21	8818	76
SNCAIP	Synuclein alpha-interacting protein	Synphilin1			5q23.2	151 817	76
UCHL1	Ubiquitin carboxyl-terminal esterase L1	PARK5			4p13	11 518	76
GPR37	G-protein-coupled receptor 37	PAELR			7q31.33	19 566	76
UBB	Ubiquitin B precursor	THEEK			17p11.2	1688	76
UBE1	Ubiquitin-activating enzyme E1				Xp11.3	24 267	76
STUB1	STIP1 homology and U-box containing protein 1	CHIP			16p13.3	2277	76, 79
UBE2L3	Ubiquitin-conjugating enzyme E2L 3	UBCH7			22q11.21	56 367	76
UBE2L6	Biquitin-conjugating enzyme E2L 6	UBCH8			11q12.1	16 325	76
PARK7	Parkinson disease (autosomal recessive, early onset) 7 (PARK7)	DJ1			1p36.23	23 544	215
Genes implicated RELN	l in the pathophysiology of schizophrenia Reelin		Cell migration		7q22.1	517 727	150
DISC1	Disrupted in schizophrenia 1		Cell migration		1q42.2	399739	93, 216, 217
NDEL1	nudE nuclear distribution gene E homolog like 1	NUDEL	Cell migration		17p13.1	32 293	217
PAFAH1B1	Platelet-activating factor acetylhydrolase, isoform Ib, alpha subunit 45 kDa	LIS1	Cell migration		17p13.3	91 953	217, 218
PTAFR CHL1	Platelet-activating factor receptor Cell adhesion molecule with homology to L1CAM		Cell migration Cell migration		1p35.3 3p26.3	27 328 212 449	219 220
L1CAM	L1 cell adhesion molecule isoform 1 precursor		Cell migration		Xq28	13 925	221, 222
NCAM1	Nerural cell adhesion molecule		Cell migration		11q23.1	314 048	66, 223
DTNBP1	Dysbindin1 Neurogulin1		Schizophrenia gene	9	6p22.3	140 167	1
NRG1 PRODH	Neuregulin1 Prolin dehydrogenase (oxidase) 1		Schizophrenia gene Schizophrenia gene	,	8p12	1 103 459	2
CLDN11	Oligodendrocyte transmembrane protein		Myelination	;	22q11 3q26.2	23 771 13 827	224 94

94	94 94	94 94	94 94	94	94
22 605	60484 37 252	15621 2276	3209 15 706	12 220	32 401
12q13.2	14q31.3 18q23	6p22.1 21022.11	21q22.11 X622.2	22q13.1	3q22.1
Myelination	Myelination Myelination	Myelination Mvelination	Myelination Myelination	Myelination	Myelination
v-Erb-b2 erythroblastic leukemia viral oncogene	Galactosylceramidase precursor Myelin basic protein	Myelin oligodendrocyte glycoprotein Oligodendrocyte transcription factor 1	Oligodendrocyte lineage transcription factor 2 Proteolind motein 1	SRY (sex determining region Y)-box 10	Transferrin
ERBB3	<u>GALC</u> <u>MBP</u>	<u>MOG</u> 01.1G1	OLIG2 PLP1	$\overline{SOX_10}$	TF

"When a gene has not intensively been studied despite its putative key biologic role in one of the pathways, it may lack a reference. Conversely, when numerous studies The total number of candidate genes: 257; total genomic size: 26 620 628 bp.

have been conducted, review articles, meta-analyses, and large-scale studies are preferentially given

Genetic tests of systems in affective disorders F Hattori et al

by lithium,^{24,25} and its coding gene (IMPA2) is a promising candidate.^{26,27} Another gene in this pathway, phosphoinositide-3-kinase class 3 (PIK3C3), was recently reported to be associated with bipolar disorder and schizophrenia.²⁸ Calcium signaling is closely linked to the phosphoinositide pathway, and expression of protein kinase C subtypes (PRKCA and PRKCE) and its substrate myristoylated alanine-rich protein kinase C (MARCKS) are reduced in the rat brain after chronic treatment with lithium.²⁹

Monoamine neurotransmitter receptors, such as alpha2 and beta-1-adrenergic receptors, are coupled to G proteins, which, upon stimulation, activate enzymes in the cAMP-signaling pathway. The gene for regulator of G-protein signaling 4 (RGS4) was initially brought into attention by a microarray study and recently reported to be associated with schizophrenia.³⁰ Selecting candidates based on expression data also led to the detection of associations of Gprotein-coupled receptor kinase3 (GRK3)³¹ and other promising gene³² with bipolar disorder. Altered expression level of G protein AS and AI2 subunits (GNAS, GNAI2) in the post-mortem brains from bipolar or lithium receiving subjects has also been reported,³³ although variants in the former gene are not apparently associated with bipolar disorder.³⁴ Recent animal studies demonstrated that chronic administration of antidepressants induces elevation of cAMP-responsive element binding protein gene (CREB1) expression-³⁵ and cAMP-responsive element modulator (CREM)-deficient mice showed emotional and behavioral changes.³⁶ Also, chronic antidepressant administration increases cAMP phosphodiesterase (PDE4A and PDE4B) expression in rat frontal cortex.³⁷ A phosphodiesterase inhibitor, rolipram, has been reported to have an antidepressive effect.38

Further, abnormalities of molecules that overarch multiple intracellular signaling pathways (eg calcium/ calmodulin-dependent protein kinase II alpha (CAM-K2A),^{39,40} DARPP-32 (PPP1R1B),⁴¹ and v-akt murine thymoma viral oncogene homologs (AKT1),42,43 are also suggested in psychiatric illnesses.

Roles of other neurotransmission systems including cholinergic, amino acid (glutamate and GABA) and peptidergic neurotransmission in bipolar disorder or related physiological functions such as appetite and anxiety are also supported by neuropharmacological findings,^{44–48} although not detailed here.

A neuroendocrine system

The hypothalamic-pituitary-adrenocortical (HPA) axis has a long history as a stress-response pathway and has been repeatedly suggested to play a role in major depressive disorder.⁴⁹ A recent hypothesis that elevated levels of cortisol in depressed patients may contribute to neuronal death and to reduced dendritic arborizations in hippocampus^{50–52} seems to have a potential for elucidating the etiology of mood disorder. This hypothesis is consistent with the previous neuroimaging findings reporting reductions of hippocampal volume in some mood disorder subjects.^{53,54}

Obvious candidates based on these formulations are genes encoding peptide hormones (proopiomelanocortin (POMC) and corticotrophin-releasing hormone precursor (CRH)) and their receptors (MC2R, MC4R, CRHR1, and CRHR2). In addition, glucocorticoid receptor (NR3C1), which binds to glucocorticoids and then enters the nucleus to enhance or inhibit gene expression by direct binding to glucocorticoid response elements or by interactions with other transcriptional factors such as CREB, can be considered an important signaling component. Other candidates include genes for heat-shock proteins such as HSPA5, which associate with the glucocorticoid receptor as chaperones, multidrug-resistant protein 1 (ABCB1), which pumps out cortisol from the cell,⁵⁵ and 11-beta-hydroxysteroid dehydrogenase 1 (HSD11B1), which metabolizes cortisol.⁵⁶

Neurotrophic factor systems

There has been growing evidence supporting roles of neurotrophic factors and growth factors, which regulate neuronal growth, development, survival, and plasticity, in mood disorders. The gene for brain-derived neurotrophic factor (BDNF), which is involved in neuronal survival and arborization in hippocampus, is an unusually promising candidate. The expression of BDNF is decreased by stress and glucocorticoids⁵⁷ and is increased by chronic antidepressant or electroconvulsive treatment in rat hippocampus.58,59 Association between BDNF and bipolar disorder has been replicated in independent pedigree samples.^{60,61} Also, the gene for insulin-like growth factor I (IGF1) would be worth studying based on its role in neurogenesis and reported altered expression level in the brains of metamphetaminetreated rats.⁶² Recently, a requirement was demonstrated for hippocampal neurogenesis for behavioral effects of antidepressants, consistent with importance of genes involved in neurogenesis in studies of depression.63

As in the neurotransmission systems and HPA axis, genes for molecular components of the neurotrophic factor system have not been systematically studied for association with bipolar disorder. Genes such as NTRK2 and NTRK3 coding for neurotrophic factor receptors collectively called Trk are candidates as well as genes for ligands. Among the several intracellular cascade systems activated upon Trk stimulation are phosphoinositide signaling and protein kinase C pathway, whose components are shared with neurotransmission systems described above. It may be challenging to select candidates from the mitogen-activated protein (MAP) kinase cascade, another intracellular signaling pathway downstream of Trk, because of the large number of subtypes for each protein. However, an expression study on PC12 cells differentiated by nerve growth factor (NGF) showed that lithium administration altered expression of two genes (MAP2K2 and MAPK1) encoding kinases of this pathway. 64

Circadian rhythm

Abnormalities in circadian rhythm are found in seasonal affective disorder as well as in a fraction of patients with major depression. The fact that interventions on circadian rhythm such as light therapy and sleep deprivation can improve the symptoms of depression or provoke mania might be indicative of an etiological role of this system.⁶⁵ The mammalian circadian pacemaker is located within the suprachiasmatic nucleus (SCN) in the hypothalamus. 'Clock genes' (eg CLOCK, ARNTL (BMAL1), ARNTL2 (BMAL2), PER1, PER2, and PER3) play crucial roles in generating and regulating circadian rhythm, and mutations of these genes have already been reported to cause abnormal circadian locomotion in rodents. In the past several years, many clock genes have been identified in various species such as Drosophilae, fungi, and rodents. As human counterparts or homologues have already described for most clock genes,66 the circadian rhythm system is amenable to genetic dissection.

Although the clock genes are probably the first candidates to be studied in the circadian rhythm system, it is noteworthy that these gene loci did not show major effect on strain variability in mouse circadian behavior in a genomewide analysis.67 Studying nonclock genes with suggested roles in circadian rhythm would also be important. Since the SCN can be entrained to light/dark cycle, genes encoding components involved in photoreception in the retinohypothalamic tract are intriguing candidates. For example, pituitary adenylate cyclaseactivating polypeptide (ADCYAP1) is a major neurotransmitter of this tract as well as glutamate.⁶⁸ Lack of either of its receptor genes, ADCYAP1R1 or VIPR2, leads to abnormal circadian phenotype in rodents.⁶⁹ In addition, since diurnal rhythmicity in physiological functions and behaviors is eventually affected in mood disorder, output pathways from the SCN, including pineal melatonin secretion,^{70,71} cannot be omitted. Recently, transforming growth factor-a (TGFA)⁷² and prokineticin 2 (PROK2),⁷³ substances secreted from the SCN to adjacent hypothalamic areas, have been reported to regulate behavioral circadian rhythm in mice.

Systems implicated in Parkinson's disease and schizophrenia

Other CNS diseases may also provide clues for susceptibility genes for mood disorders, if they share etiological mechanisms with mood disorders. Symptoms of depression occur in approximately half of the subjects with Parkinson's disease. Although neuropathological changes characteristic of Parkinson's

disease such as Lewy body formation and demise of dopaminergic neurons in the substantia nigra are not generally observed in the post-mortem brains of mood disorder subjects, depression is reported to be a risk factor for developing Parkinson's disease,^{74,75} suggesting a mechanism shared in part by both illnesses. Recent studies have revealed that genes playing roles in the ubiquitin-proteasome pathway cause some familial forms of Parkinson's disease (SNCA, PARK2 (PARKIN), UCHL1).⁷⁶ Several other components that play crucial roles in this pathway have also been reported; for example, Parkin-associated endothelin receptor-like receptor (Pael-R)77 and CDCrel-1 (PNUTL1)⁷⁸ suggested for one of the substrates for PARKIN-mediated ubiquitination. Also, a protein called carboxy-terminus of Hsp70p-interacting protein (CHIP) is known to modulate the function of PARKIN.79

Also, the hypothesis that one subclass of major affective disorders shares susceptibility genes in common with schizophrenia is particularly promising. Genetic epidemiology has provided evidence for this overlap, primarily in family studies. Gershon et al observed an excess of major depression and schizoaffective disorder in the relatives of both mood disorder and schizophrenia probands.^{80,81} The excess of major depression in relatives of both mood disorders and schizophrenia has been a consistent finding.⁸² Studies from three data sets have addressed the issue of psychotic mood disorder/schizophrenia overlap. Two of the data sets found elevated rates of psychotic mood disorder in relatives of schizophrenic probands, and vice versa;⁸³⁻⁸⁶ the third also suggested shared liability.87 In addition, some twin studies have found evidence of shared heritability between psychotic mood disorder and schizophrenia.88,89 Further, linkage studies of bipolar illness and schizophrenia have implicated overlapping chromosomal regions, including 10p12–13, 13q31–33, 18p11.2, and 22q11–13,^{90,91} although not all analyses agree.⁹² There has been considerable progress in identifying genes associated with schizophrenia, particularly in chromosomal regions where evidence of linkage was suggested. Among them, the G72/G30 gene locus on 13q33 has been demonstrated to be associated with both schizophrenia and bipolar disorder.^{3,4,6-8} The notion of shared susceptibility gene is also supported by a very recent association study on DISC1 gene.93 Other schizophrenia genes such as NRG1 and DTNBP might also be worth studying for possible association with mood disorders. In addition, a recent study has demonstrated convergent expression alterations of genes involved in myelination in both schizophrenia and bipolar disorder.⁹⁴ Such genes would be good candidates for susceptibility genes shared by major psychiatric illnesses. Studying these genes implicated in the pathophysiology of schizophrenia may contribute to eventual reconstruction of the current diagnostic nosology, and to identification of new molecular targets with broad therapeutic spectra.

Prioritizing candidate genes by quantitative trait loci (QTL) analysis

Combining microarray gene expression data and gene mapping methods to identify genetic determinants of gene expression (expression phenotypes) has recently been applied in several species, including mouse and human.^{95–97} This has resulted in the successful identification of QTLs, which control the baseline expression levels of some genes. We have used this approach to identify regulators of the expression of the candidate genes we compiled, in the adult BXD recombinant inbred mice. We decided to use QTL mapping data in mouse instead of human, because the only available human QTL mapping results are from lymphoblast cell lines, and it has been shown in mouse that QTLs in brain and hematopoietic stem cells differ greatly.98 Interval mappings were performed at the WebQTL site (see Electronic-Database Information), using UTHSC Brain mRNA U74Av2 (Mar04) RMA Orig database. QTL with an empirical genome-wide *P*-value less than 0.05 was detected for six genes, namely HTR2B, HTR4, GRIN2B, PRKCE, PER3, and BCL2.

We then determined if any of the QTLs is in syntenic regions to human bipolar linkage findings. If a *cis*-acting QTL, for which the QTL is in the target gene itself, overlaps with bipolar linkage, the target gene itself merits testing in association studies as positional candidate for bipolar linkage. If the overlapping QTL is a *trans*-acting QTL, the regulator at the QTL is a new candidate gene for association study. Thus, linkage results to gene expression may point to new candidate genes and underlying regulatory pathways for the bipolar linkage. We found that two QTLs overlap with bipolar linkage regions. A translinked QTL for two genes, HTR4 and BCL2, is mapped to the same region in mouse genome, and may thus represent a single linkage. This trans-linked QTL for the two genes can be divided into four segments, three of which are in syntenic regions to bipolar linkage findings at 2q,92 6q,99 and 10q,92 respectively. In addition, a *cis*-QTL for the gene PER3 is in syntenic region to bipolar linkage finding at 1p.⁹² This suggests that PER3 is a good candidate for this bipolar linkage. With the identification of more bipolar linkages and the improvement of QTL mapping methods, the list of genes with QTLs overlapping with bipolar linkage will certainly grow.

Requirements for implementation of the systems genetic approach and future directions

The approach being suggested would benefit from the feasibility of much denser genotyping compared to the whole-genome LD mapping. It requires collection of information on functional importance of polymorphic markers, as well as positions, flanking sequences, validation status, and allele frequencies. Since the information is scattered on multiple webbased databases such as those from UCSC Genome

Molecular Psychiatry

Bioinformatics, dbSNP, HapMap, and SNP Consortium (see Electronic-Database Information), manual mining of information can be tedious and sometimes infeasible. What is needed is a sophisticated informatics system facilitating compilation of pieces of information from different resources into a single platform. We might further assign priority of genotyping to each polymorphism according to its potential functional effect and the degree of LD with other polymorphisms.

Genotype data obtained by the study of multiple genes in a biologic system may provide a set of multiple susceptibility genes either through conventional association analyses or through multilocus association analyses such as the one developed by Hoh *et al.*²¹ Although the latter may provide a list of susceptibility genes, in which some of them are exerting interacting effects, we further need computational modeling, which allows for systems analysis describing specific relationships between genes and clinical features. This would provide a basis for putting genetic results back into biological and clinical context. The systems listed in Table 1 are considered more complex in reality than described above, and it is also possible that interactions between systems rather than within a system increase the risk for major affective disorders. For example, a suggested integral model views multiple systems from a single perspective of neuronal death/survival. Hyperfunction of glutamatergic neurotransmission and HPA axis can lead to neuronal death, whereas adrenergic/serotonergic neurotransmission and neurotrophic factors favor neuronal survival/arborization or neurogenesis, with each system interacting with several others.⁵⁰⁻⁵² The hypothesis-based study described so far is expected to increase the likelihood of obtaining outputs that can be reasonably interpreted through the current biological and epidemiological knowledge of major affective disorders. The systems functioning conclusions from the genetic outputs, although, would not necessarily be completely consistent with the current hypothesis-based systems. The biological meaning of the genetic outputs could be tested by further research designs such as multiple gene manipulations in rodents.

Electronic-Database Informaion

Databases for biologic pathways

Gene Ontology (GO) Consortium:

http://www.geneontology.org/ Kyoto Encyclopedia of Genes and Genomes (KEGG) databases:

http://www.genome.ad.jp/kegg/pathway.html

Databases for genomic information and gene expression **UCSC Genome Bioinformatics:** http://genome.ucsc.edu/ dbSNP: http://www.ncbi.nlm.nih.gov/SNP/

The International HapMap Project: http://www.hapmap.org/ The SNP Consortium: http://snp.cshl.org/ Gene Expression Omnibus (GEO): http://www.ncbi.nlm.nih.gov/geo/ WebQTL: http://www.genenetwork.org/

Candidate gene projects involving resequencing The NIEHS SNPs program: http://egp.gs.washington.edu/ The Cardiogenomics program: http://www.cardiogenomics.org The SeattleSNPs program:

http://pga.gs.washington.edu/

References

- 1 Straub RE, Jiang Y, MacLean CJ, Ma Y, Webb BT, Myakishev MV et al. Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 2002; 71: 337-348.
- 2 Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 2002; 71: 877-892.
- 3 Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H et al. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci USA 2002; 99: 13675–13680.
- 4 Hattori E, Liu C, Badner JA, Bonner TI, Christian SL, Maheshwari M et al. Polymorphisms at the G72/G30 gene locus, on 13q33, are associated with bipolar disorder in two independent pedigree series. Am J Hum Genet 2003; 72: 1131-1140.
- 5 Maier W, Zobel A, Rietschel M. Genetics of schizophrenia and affective disorders. Pharmacopsychiatry 2003; 36(Suppl 3): S195-S202.
- 6 Addington AM, Gornick M, Sporn AL, Gogtay N, Greenstein D, Lenane M et al. Polymorphisms in the 13q33.2 gene G72/G30 are associated with childhood-onset schizophrenia and psychosis not otherwise specified. Biol Psychiatry 2004; 55: 976-980.
- 7 Chen YS, Akula N, Detera-Wadleigh SD, Schulze TG, Thomas J, Potash JB et al. Findings in an independent sample support an association between bipolar affective disorder and the G72/G30 locus on chromosome 13q33. Mol Psychiatry 2004; 9: 87-92.
- 8 Schumacher J, Jamra RA, Freudenberg J, Becker T, Ohlraun S, Otte AC et al. Examination of G72 and D-amino-acid oxidase as genetic risk factors for schizophrenia and bipolar affective disorder. Mol Psychiatry 2004; 9: 203-207.
- 9 Risch NJ. Searching for genetic determinants in the new millennium. Nature 2000; 405: 847-856.
- 10 Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 2003; 33: 177-182.
- 11 Guengerich FP. The Environmental Genome Project: functional analysis of polymorphisms. Environ Health Perspect 1998; 106: 365-368.
- 12 Xu Q, Jia YB, Zhang BY, Zou K, Tao YB, Wang YP et al. Association study of an SNP combination pattern in the dopaminergic pathway in paranoid schizophrenia: a novel strategy for complex disorders. Mol Psychiatry 2004; 9: 510.
- 13 Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B et al. The structure of haplotype blocks in the human genome. Science 2002; 296: 2225-2229.
- 14 Patil N, Berno AJ, Hinds DA, Barrett WA, Doshi JM, Hacker CR et al. Blocks of limited haplotype diversity revealed by highresolution scanning of human chromosome 21. Science 2001; 294: 1719-1723.
- 15 The International HapMap Project. The International HapMap Consortium. Nature 2003; 426: 789-796.

- 16 Wall JD, Pritchard JK. Assessing the performance of the haplotype block model of linkage disequilibrium. *Am J Hum Genet* 2003; **73**: 502–515.
- 17 Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA. Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. *Am J Hum Genet* 2004; **74**: 106–120.
- 18 Risch N, Merikangas K. The future of genetic studies of complex human diseases. *Science* 1996; **273**: 1516–1517.
- 19 Tabor HK, Risch NJ, Myers RM. Opinion: candidate-gene approaches for studying complex genetic traits: practical considerations. *Nat Rev Genet* 2002; **3**: 391–397.
- 20 Benjamini Y, Hochberg Y. Controlling the false discovery rate—a practical and powerful approach to multiple testing. *J Roy Statist Soc Ser B* 1995; **57**: 289–300.
- 21 Hoh J, Wille A, Ott J. Trimming, weighting, and grouping SNPs in human case–control association studies. *Genome Res* 2001; **11**: 2115–2119.
- 22 Gretarsdottir S, Sveinbjornsdottir S, Jonsson HH, Jakobsson F, Einarsdottir E, Agnarsson U *et al.* Localization of a susceptibility gene for common forms of stroke to 5q12. *Am J Hum Genet* 2002; **70**: 593–603.
- 23 Potash JB, DePaulo Jr JR. Searching high and low: a review of the genetics of bipolar disorder. *Bipolar Disord* 2000; **2**: 8–26.
- 24 Atack JR, Broughton HB, Pollack SJ. Inositol monophosphatase—a putative target for Li⁺ in the treatment of bipolar disorder. *Trends Neurosci* 1995; 18: 343–349.
- 25 Hallcher LM, Sherman WR. The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. *J Biol Chem* 1980; **255**: 10896–10901.
- 26 Yoshikawa T, Padigaru M, Karkera JD, Sharma M, Berrettini WH, Esterling LE *et al.* Genomic structure and novel variants of myoinositol monophosphatase 2 (IMPA2). *Mol Psychiatry* 2000; 5: 165–171.
- 27 Sjoholt G, Gulbrandsen AK, Lovlie R, Berle JO, Molven A, Steen VM. A human myo-inositol monophosphatase gene (IMPA2) localized in a putative susceptibility region for bipolar disorder on chromosome 18p11.2: genomic structure and polymorphism screening in manic-depressive patients. *Mol Psychiatry* 2000; 5: 172–180.
- 28 Stopkova P, Saito T, Papolos DF, Vevera J, Paclt I, Zukov I et al. Identification of PIK3C3 promoter variant associated with bipolar disorder and schizophrenia. Biol Psychiatry 2004; 55: 981–988.
- 29 Manji HK, McNamara R, Chen G, Lenox RH. Signalling pathways in the brain: cellular transduction of mood stabilisation in the treatment of manic-depressive illness. *Aust N Z J Psychiatry* 1999; 33(Suppl): S65–S83.
- 30 Chowdari KV, Mirnics K, Semwal P, Wood J, Lawrence E, Bhatia T et al. Association and linkage analyses of RGS4 polymorphisms in schizophrenia. *Hum Mol Genet* 2002; **11**: 1373–1380.
- 31 Barrett TB, Hauger RL, Kennedy JL, Sadovnick AD, Remick RA, Keck PE *et al.* Evidence that a single nucleotide polymorphism in the promoter of the G protein receptor kinase 3 gene is associated with bipolar disorder. *Mol Psychiatry* 2003; **8**: 546–557.
- 32 Kakiuchi C, Iwamoto K, Ishiwata M, Bundo M, Kasahara T, Kusumi I *et al.* Impaired feedback regulation of XBP1 as a genetic risk factor for bipolar disorder. *Nat Genet* 2003; **35**: 171–175.
- 33 Spleiss O, van Calker D, Scharer L, Adamovic K, Berger M, Gebicke-Haerter PJ. Abnormal G protein alpha(s)- and alpha(i2)subunit mRNA expression in bipolar affective disorder. *Mol Psychiatry* 1998; 3: 512–520.
- 34 Ram A, Guedj F, Cravchik A, Weinstein L, Cao Q, Badner JA et al. No abnormality in the gene for the G protein stimulatory alpha subunit in patients with bipolar disorder. Arch Gen Psychiatry 1997; 54: 44–48.
- 35 Thome J, Sakai N, Shin K, Steffen C, Zhang YJ, Impey S et al. cAMP response element-mediated gene transcription is upregulated by chronic antidepressant treatment. J Neurosci 2000; 20: 4030–4036.
- 36 Maldonado R, Smadja C, Mazzucchelli C, Sassone-Corsi P, Mazucchelli C. Altered emotional and locomotor responses in mice deficient in the transcription factor CREM. *Proc Natl Acad Sci USA* 1999; **96**: 14094–14099.

- 37 Takahashi M, Terwilliger R, Lane C, Mezes PS, Conti M, Duman RS. Chronic antidepressant administration increases the expression of cAMP-specific phosphodiesterase 4A and 4B isoforms. *J Neurosci* 1999; **19**: 610–618.
- 38 Zhu J, Mix E, Winblad B. The antidepressant and antiinflammatory effects of rolipram in the central nervous system. CNS Drug Rev 2001; 7: 387–398.
- 39 Molnar M, Potkin SG, Bunney WE, Jones EG. MRNA expression patterns and distribution of white matter neurons in dorsolateral prefrontal cortex of depressed patients differ from those in schizophrenia patients. *Biol Psychiatry* 2003; **53**: 39–47.
- 40 Xing G, Russell S, Hough C, O'Grady J, Zhang L, Yang S *et al.* Decreased prefrontal CaMKII alpha mRNA in bipolar illness. *Neuroreport* 2002; **13**: 501–505.
- 41 Albert KA, Hemmings Jr HC, Adamo AI, Potkin SG, Akbarian S, Sandman CA *et al.* Evidence for decreased DARPP-32 in the prefrontal cortex of patients with schizophrenia. *Arch Gen Psychiatry* 2002; **59**: 705–712.
- 42 Toyota T, Yamada K, Detera-Wadleigh SD, Yoshikawa T. Analysis of a cluster of polymorphisms in AKT1 gene in bipolar pedigrees: a family-based association study. *Neurosci Lett* 2003; **339**: 5–8.
- 43 Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA. Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat Genet 2004; 36: 131–137.
- 44 Bymaster FP, Felder CC. Role of the cholinergic muscarinic system in bipolar disorder and related mechanism of action of antipsychotic agents. *Mol Psychiatry* 2002; **7**(Suppl 1): S57–S63.
- 45 Krystal JH, Sanacora G, Blumberg H, Anand A, Charney DS, Marek G *et al.* Glutamate and GABA systems as targets for novel antidepressant and mood-stabilizing treatments. *Mol Psychiatry* 2002; **7**(Suppl 1): S71–S80.
- 46 Shytle RD, Silver AA, Lukas RJ, Newman MB, Sheehan DV, Sanberg PR. Nicotinic acetylcholine receptors as targets for antidepressants. *Mol Psychiatry* 2002; 7: 525–535.
- 47 Crawley JN, Corwin RL. Biological actions of cholecystokinin. *Peptides* 1994; 15: 731–755.
- 48 Lieb K, Treffurth Y, Berger M, Fiebich BL. Substance P and affective disorders: new treatment opportunities by neurokinin 1 receptor antagonists? *Neuropsychobiology* 2002; **45**(Suppl 1): 2–6.
- 49 Young EA, Haskett RF, Murphy-Weinberg V, Watson SJ, Akil H. Loss of glucocorticoid fast feedback in depression. Arch Gen Psychiatry 1991; 48: 693–699.
- 50 Duman RS, Malberg J, Thome J. Neural plasticity to stress and antidepressant treatment. *Biol Psychiatry* 1999; 46: 1181–1191.
- 51 McEwen BS. The neurobiology of stress: from serendipity to clinical relevance. *Brain Res* 2000; **886**: 172–189.
- 52 Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression. *Neuron* 2002; **34**: 13–25.
- 53 Bremner JD, Narayan M, Anderson ER, Staib LH, Miller HL, Charney DS. Hippocampal volume reduction in major depression. *Am J Psychiatry* 2000; **157**: 115–118.
- 54 Sheline YI, Wang PW, Gado MH, Csernansky JG, Vannier MW. Hippocampal atrophy in recurrent major depression. *Proc Natl Acad Sci USA* 1996; **93**: 3908–3913.
- 55 Raison CL, Miller AH. When not enough is too much: the role of insufficient glucocorticoid signaling in the pathophysiology of stress-related disorders. *Am J Psychiatry* 2003; **160**: 1554–1565.
- 56 Yau JL, Seckl JR. 11Beta-hydroxysteroid dehydrogenase type I in the brain; thickening the glucocorticoid soup. *Mol Psychiatry* 2001; **6**: 611–614.
- 57 Smith MA, Makino S, Kvetnansky R, Post RM. Stress and glucocorticoids affect the expression of brain-derived neuro-trophic factor and neurotrophin-3 mRNAs in the hippocampus. *J Neurosci* 1995; **15**: 1768–1777.
- 58 Nibuya M, Morinobu S, Duman RS. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 1995; 15: 7539–7547.
- 59 Russo-Neustadt AA, Beard RC, Huang YM, Cotman CW. Physical activity and antidepressant treatment potentiate the expression of specific brain-derived neurotrophic factor transcripts in the rat hippocampus. *Neuroscience* 2000; **101**: 305–312.
- 60 Sklar P, Gabriel SB, McInnis MG, Bennett P, Lim YM, Tsan G et al. Family-based association study of 76 candidate genes in bipolar

F Hattori et al

Genetic tests of systems in affective disorders

- disorder: BDNF is a potential risk locus. Brain-derived neutrophic factor. Mol Psychiatry 2002; 7: 579-593.
- 61 Neves-Pereira M, Mundo E, Muglia P, King N, Macciardi F, Kennedy JL. The brain-derived neurotrophic factor gene confers susceptibility to bipolar disorder: evidence from a family-based association study. Am J Hum Genet 2002; 71: 651–655.
- 62 Niculescu III AB, Segal DS, Kuczenski R, Barrett T, Hauger RL, Kelsoe JR. Identifying a series of candidate genes for mania and psychosis: a convergent functional genomics approach. Physiol Genom 2000; 4: 83-91.
- 63 Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003; 301: 805-809.
- 64 Cordeiro ML, Umbach JA, Gundersen CB. Lithium ions upregulate mRNAs encoding dense-core vesicle proteins in nerve growth factor-differentiated PC12 cells. J Neurochem 2000; 75: 2622-2625.
- 65 Bunney WE, Bunney BG. Molecular clock genes in man and lower animals: possible implications for circadian abnormalities in depression. Neuropsychopharmacology 2000; 22: 335-345.
- 66 Cermakian N, Boivin DB. A molecular perspective of human circadian rhythm disorders. Brain Res Brain Res Rev 2003; 42: 204 - 220.
- 67 Shimomura K, Low-Zeddies SS, King DP, Steeves TD, Whiteley A, Kushla J et al. Genome-wide epistatic interaction analysis reveals complex genetic determinants of circadian behavior in mice. Genome Res 2001; 11: 959-980.
- 68 Hannibal J, Vrang N, Card JP, Fahrenkrug J. Light-dependent induction of cFos during subjective day and night in PACAPcontaining ganglion cells of the retinohypothalamic tract. J Biol Rhythms 2001; 16: 457-470.
- 69 Hannibal J, Jamen F, Nielsen HS, Journot L, Brabet P, Fahrenkrug J. Dissociation between light-induced phase shift of the circadian rhythm and clock gene expression in mice lacking the pituitary adenylate cyclase activating polypeptide type 1 receptor. J Neurosci 2001; 21: 4883-4890.
- 70 Lewy AJ, Wehr TA, Goodwin FK, Newsome DA, Rosenthal NE. Manic-depressive patients may be supersensitive to light. Lancet 1981: 1: 383-384.
- 71 Wetterberg L, Aperia B, Beck-Friis J, Kjellman BF, Ljunggren JG, Nilsonne A et al. Melatonin and cortisol levels in psychiatric illness. Lancet 1982; 2: 100.
- 72 Kramer A, Yang FC, Snodgrass P, Li X, Scammell TE, Davis FC et al. Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science 2001; 294: 2511-2515.
- 73 Cheng MY, Bullock CM, Li C, Lee AG, Bermak JC, Belluzzi J et al. Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature 2002; 417: 405-410.
- 74 Hubble JP, Cao T, Hassanein RE, Neuberger JS, Koller WC. Risk factors for Parkinson's disease. Neurology 1993; 43: 1693-1697.
- 75 Leentjens AF, Van den AM, Metsemakers JF, Lousberg R, Verhey FR. Higher incidence of depression preceding the onset of Parkinson's disease: a register study. Mov Disord 2003; 18: 414-418.
- 76 Giasson BI, Lee VM. Are ubiquitination pathways central to Parkinson's disease? Cell 2003; 114: 1-8.
- 77 Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, Takahashi R. An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 2001; 105: 891-902.
- 78 Zhang Y, Gao J, Chung KK, Huang H, Dawson VL, Dawson TM. Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci USA 2000; 97: 13354-13359.
- 79 Imai Y, Soda M, Hatakeyama S, Akagi T, Hashikawa T, Nakayama KI et al. CHIP is associated with Parkin, a gene responsible for familial Parkinson's disease, and enhances its ubiquitin ligase activity. Mol Cell 2002; 10: 55-67.
- 80 Nurnberger Jr J, Guroff JJ, Hamovit J, Berrettini W, Gershon E. A family study of rapid-cycling bipolar illness. J Affect Disord 1988; 15: 87-91.

- 81 Gershon ES, Hamovit J, Guroff JJ, Dibble E, Leckman JF, Sceerv W et al. A family study of schizoaffective, bipolar-I, bipolar-II, unipolar, and normal control probands. Arch Gen Psychiatry 1982: 39: 1157-1167.
- 82 Maier W, Lichtermann D, Minges J, Hallmayer J, Heun R, Benkert O et al. Continuity and discontinuity of affective disorders and schizophrenia. Results of a controlled family study. Arch Gen Psychiatry 1993; 50: 871-883.
- 83 Kendler KS, Gruenberg AM, Tsuang MT. Psychiatric illness in first-degree relatives of schizophrenic and surgical control patients. A family study using DSM-III criteria. Arch Gen Psychiatry 1985; 42: 770-779.
- 84 Kendler KS, Gruenberg AM, Tsuang MT. A DSM-III family study of the nonschizophrenic psychotic disorders. Am J Psychiatry 1986; 143: 1098-1105.
- 85 Kendler KS, McGuire M, Gruenberg AM, O'Hare A, Spellman M, Walsh D. The Roscommon Family Study. I. Methods, diagnosis of probands, and risk of schizophrenia in relatives. Arch Gen Psychiatry 1993: 50: 527-540.
- 86 Kendler KS, McGuire M, Gruenberg AM, O'Hare A, Spellman M, Walsh D. The Roscommon Family Study. IV. Affective illness, anxiety disorders, and alcoholism in relatives. Arch Gen Psychiatry 1993; 50: 952-960.
- 87 Erlenmeyer-Kimling L, Adamo UH, Rock D, Roberts SA, Bassett AS, Squires-Wheeler E et al. The New York High-Risk Project. Prevalence and comorbidity of axis I disorders in offspring of schizophrenic parents at 25-year follow-up. Arch Gen Psychiatry 1997; **54**: 1096-1102.
- 88 Farmer AE, McGuffin P, Gottesman II. Twin concordance for DSM-III schizophrenia. Scrutinizing the validity of the definition. Arch Gen Psychiatry 1987; 44: 634-641.
- 89 Cardno AG, Rijsdijk FV, Sham PC, Murray RM, McGuffin P. A twin study of genetic relationships between psychotic symptoms. Am J Psychiatry 2002; 159: 539-545.
- 90 Badner JA, Gershon ES. Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry 2002; 7:405-411.
- 91 Berrettini WH. Are schizophrenic and bipolar disorders related? A review of family and molecular studies. Biol Psychiatry 2000; **48**: 531-538.
- 92 Segurado R, Detera-Wadleigh SD, Levinson DF, Lewis CM, Gill M, Nurnberger Jr JI et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part III: bipolar disorder. Am J Hum Genet 2003; 73: 49-62.
- 93 Hodgkinson CA, Goldman D, Jaeger J, Persaud S, Kane JM, Lipsky RH et al. Disrupted in schizophrenia 1 (DISC1): association with schizophrenia, schizoaffective disorder, and bipolar disorder. Am J Hum Genet 2004; 75: 862-872.
- 94 Tkachev D, Mimmack ML, Ryan MM, Wayland M, Freeman T, Jones PB et al. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 2003; 362: 798-805.
- 95 Morley M, Molony CM, Weber TM, Devlin JL, Ewens KG, Spielman RS et al. Genetic analysis of genome-wide variation in human gene expression. Nature 2004; 430: 743-747.
- 96 Monks SA, Leonardson A, Zhu H, Cundiff P, Pietrusiak P, Edwards S et al. Genetic inheritance of gene expression in human cell lines. Am J Hum Genet 2004; 75: 1094-1105.
- 97 Chesler EJ, Lu L, Shou S, Qu Y, Gu J, Wang J et al. Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet 2005; 37: 233-242.
- 98 Bystrykh L, Weersing E, Dontje B, Sutton S, Pletcher MT, Wiltshire T et al. Uncovering regulatory pathways that affect hematopoietic stem cell function using 'genetical genomics'. Nat Genet 2005; 37: 225-232
- 99 Dick DM, Foroud T, Flury L, Bowman ES, Miller MJ, Rau NL et al. Genomewide linkage analyses of bipolar disorder: a new sample of 250 pedigrees from the National Institute of Mental Health Genetics Initiative. Am J Hum Genet 2003; 73: 107-114.
- 100 Schildkraut JJ. The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 1965; 122: 509-522
- 101 Cohen RM, Campbell IC, Cohen MR, Torda T, Pickar D, Siever LJ et al. Presynaptic noradrenergic regulation during depression

and antidepressant drug treatment. Psychiatry Res 1980; 3: 93–105.

- 102 Ogren SO, Fuxe K, Agnati L. The importance of brain serotonergic receptor mechanisms for the action of antidepressant drugs. *Pharmacopsychiatry* 1985; 18: 209–213.
- 103 Charney DS, Manji HK. Life stress, genes, and depression: multiple pathways lead to increased risk and new opportunities for intervention. *Sci STKE* 2004; **2004**: re5.
- 104 Tanoue A, Koshimizu TA, Tsujimoto G. Transgenic studies of alpha(1)-adrenergic receptor subtype function. *Life Sci* 2002; **71**: 2207–2215.
- 105 Feng J, Sobell JL, Heston LL, Goldman D, Cook Jr E, Kranzler HR et al. Variants in the alpha2A AR adrenergic receptor gene in psychiatric patients. Am J Med Genet 1998; **81**: 405–410.
- 106 Philipp M, Brede M, Hein L. Physiological significance of alpha(2)-adrenergic receptor subtype diversity: one receptor is not enough. Am J Physiol Regul Integr Comp Physiol 2002; 283: R287-295.
- 107 Ewald H, Degn B, Mors O, Kruse TA. Support for the possible locus on chromosome 4p16 for bipolar affective disorder. *Mol Psychiatry* 1998; 3: 442–448.
- 108 Khaitan L, Calabrese JR, Stockmeier CA. Effects of chronic treatment with valproate on serotonin-1A receptor binding and function. *Psychopharmacology (Berlin)* 1994; **113**: 539–542.
- 109 Frisch A, Postilnick D, Rockah R, Michaelovsky E, Postilnick S, Birman E et al. Association of unipolar major depressive disorder with genes of the serotonergic and dopaminergic pathways. *Mol Psychiatry* 1999; 4: 389–392.
- 110 Bellivier F, Leboyer M, Courtet P, Buresi C, Beaufils B, Samolyk D et al. Association between the tryptophan hydroxylase gene and manic-depressive illness. Arch Gen Psychiatry 1998; 55: 33–37.
- 111 Walther DJ, Bader M. A unique central tryptophan hydroxylase isoform. *Biochem Pharmacol* 2003; **66**: 1673–1680.
- 112 Zill P, Baghai TC, Zwanzger P, Schule C, Eser D, Rupprecht R *et al.* SNP and haplotype analysis of a novel tryptophan hydroxylase isoform (TPH2) gene provide evidence for association with major depression. *Mol Psychiatry* 2004; **9**: 1030–1036.
- 113 Vincent JB, Masellis M, Lawrence J, Choi V, Gurling HM, Parikh SV et al. Genetic association analysis of serotonin system genes in bipolar affective disorder. Am J Psychiatry 1999; 156: 136–138.
- 114 Tatarczynska E, Klodzinska A, Stachowicz K, Chojnacka-Wojcik E. Effect of combined administration of 5-HT1A or 5-HT1B/1D receptor antagonists and antidepressants in the forced swimming test. *Eur J Pharmacol* 2004; **487**: 133–142.
- 115 Whale R, Clifford EM, Bhagwagar Z, Cowen PJ. Decreased sensitivity of 5-HT(1D) receptors in melancholic depression. *Br J Psychiatry* 2001; **178**: 454–457.
- 116 Lin Z, Walther D, Yu XY, Drgon T, Uhl GR. The human serotonin receptor 2B: coding region polymorphisms and association with vulnerability to illegal drug abuse. *Pharmacogenetics* 2004; 14: 805–811.
- 117 Lerer B, Macciardi F, Segman RH, Adolfsson R, Blackwood D, Blairy S *et al.* Variability of 5-HT2C receptor cys23ser polymorphism among European populations and vulnerability to affective disorder. *Mol Psychiatry* 2001; **6**: 579–585.
- 118 Niesler B, Flohr T, Nothen MM, Fischer C, Rietschel M, Franzek E et al. Association between the 5' UTR variant C178T of the serotonin receptor gene HTR3A and bipolar affective disorder. *Pharmacogenetics* 2001; 11: 471–475.
- 119 Davies PA, Pistis M, Hanna MC, Peters JA, Lambert JJ, Hales TG et al. The 5-HT3B subunit is a major determinant of serotoninreceptor function. Nature 1999; **397**: 359–363.
- 120 Ohtsuki T, Ishiguro H, Detera-Wadleigh SD, Toyota T, Shimizu H, Yamada K et al. Association between serotonin 4 receptor gene polymorphisms and bipolar disorder in Japanese case–control samples and the NIMH Genetics Initiative Bipolar Pedigrees. Mol Psychiatry 2002; 7: 954–961.
- 121 Anguelova M, Benkelfat C, Turecki G. A systematic review of association studies investigating genes coding for serotonin receptors and the serotonin transporter: I. Affective disorders. *Mol Psychiatry* 2003; 8: 574–591.
- 122 Kirov G, Murphy KC, Arranz MJ, Jones I, McCandles F, Kunugi H et al. Low activity allele of catechol-O-methyltransferase gene

associated with rapid cycling bipolar disorder. *Mol Psychiatry* 1998; **3**: 342–345.

- 123 Kirov G, Jones I, McCandless F, Craddock N, Owen MJ. Familybased association studies of bipolar disorder with candidate genes involved in dopamine neurotransmission: DBH, DAT1, COMT, DRD2, DRD3 and DRD5. *Mol Psychiatry* 1999; 4: 558–565.
- 124 Ni X, Trakalo JM, Mundo E, Macciardi FM, Parikh S, Lee L et al. Linkage disequilibrium between dopamine D1 receptor gene (DRD1) and bipolar disorder. *Biol Psychiatry* 2002; **52**: 1144–1150.
- 125 Massat I, Souery D, Del-Favero J, Van Gestel S, Serretti A, Macciardi F et al. Positive association of dopamine D2 receptor polymorphism with bipolar affective disorder in a European Multicenter Association Study of affective disorders. Am J Med Genet 2002; 114: 177–185.
- 126 Elvidge G, Jones I, McCandless F, Asherson P, Owen MJ, Craddock N. Allelic variation of a Ball polymorphism in the DRD3 gene does not influence susceptibility to bipolar disorder: results of analysis and meta-analysis. *Am J Med Genet* 2001; **105**: 307–311.
- 127 Muglia P, Petronis A, Mundo E, Lander S, Cate T, Kennedy JL. Dopamine D4 receptor and tyrosine hydroxylase genes in bipolar disorder: evidence for a role of DRD4. *Mol Psychiatry* 2002; 7: 860–866.
- 128 Iwayama-Shigeno Y, Yamada K, Toyota T, Shimizu H, Hattori E, Yoshitsugu K et al. Distribution of haplotypes derived from three common variants of the NR4A2 gene in Japanese patients with schizophrenia. Am J Med Genet 2003; 118B: 20–24.
- 129 Jahnes E, Muller DJ, Schulze TG, Windemuth C, Cichon S, Ohlraun S *et al.* Association study between two variants in the DOPA decarboxylase gene in bipolar and unipolar affective disorder. *Am J Med Genet* 2002; **114**: 519–522.
- 130 Preisig M, Bellivier F, Fenton BT, Baud P, Berney A, Courtet P et al. Association between bipolar disorder and monoamine oxidase A gene polymorphisms: results of a multicenter study. Am J Psychiatry 2000; 157: 948–955.
- 131 Sands SA, Guerra V, Morilak DA. Changes in tyrosine hydroxylase mRNA expression in the rat locus coeruleus following acute or chronic treatment with valproic acid. *Neuropsychopharmacology* 2000; 22: 27–35.
- 132 Furlong RA, Rubinsztein JS, Ho L, Walsh C, Coleman TA, Muir WJ *et al.* Analysis and metaanalysis of two polymorphisms within the tyrosine hydroxylase gene in bipolar and unipolar affective disorders. *Am J Med Genet* 1999; **88**: 88–94.
- 133 Massat I, Souery D, Del-Favero J, Nothen M, Blackwood D, Muir W et al. Association between COMT (Val(158)Met) functional polymorphism and early onset in patients with major depressive disorder in a European multicenter genetic association study. *Mol Psychiatry* 2004: (Epub ahead of print).
- 134 Ralph-Williams RJ, Paulus MP, Zhuang X, Hen R, Geyer MA. Valproate attenuates hyperactive and perseverative behaviors in mutant mice with a dysregulated dopamine system. *Biol Psychiatry* 2003; **53**: 352–359.
- 135 Greenwood TA, Alexander M, Keck PE, McElroy S, Sadovnick AD, Remick RA *et al.* Evidence for linkage disequilibrium between the dopamine transporter and bipolar disorder. *Am J Med Genet* 2001; **105**: 145–151.
- 136 Cordeiro ML, Gundersen CB, Umbach JA. Lithium ions modulate the expression of VMAT2 in rat brain. *Brain Res* 2002; 953: 189–194.
- 137 Picciotto MR. Common aspects of the action of nicotine and other drugs of abuse. *Drug Alcohol Depend* 1998; **51**: 165–172.
- 138 Graham AJ, Martin-Ruiz CM, Teaktong T, Ray MA, Court JA. Human brain nicotinic receptors, their distribution and participation in neuropsychiatric disorders. *Curr Drug Targets CNS Neuro Disord* 2002; **1**: 387–397.
- 139 Wang JC, Hinrichs AL, Stock H, Budde J, Allen R, Bertelsen S et al. Evidence of common and specific genetic effects: association of the muscarinic acetylcholine receptor M2 (CHRM2) gene with alcohol dependence and major depressive syndrome. Hum Mol Genet 2004; 13: 1903–1911.
- 140 Horiuchi Y, Nakayama J, Ishiguro H, Ohtsuki T, Detera-Wadleigh SD, Toyota T *et al.* Possible association between a haplotype of

- the GABA-A receptor alpha 1 subunit gene (GABRA1) and mood disorders. *Biol Psychiatry* 2004; **55**: 40–45.
- 141 Sieghart W. Unraveling the function of GABA(A) receptor subtypes. *Trends Pharmacol Sci* 2000; **21**: 411–413.
- 142 Sieghart W, Sperk G. Subunit composition, distribution and function of GABA(A) receptor subtypes. *Curr Top Med Chem* 2002; **2**: 795–816.
- 143 Edenberg HJ, Dick DM, Xuei X, Tian H, Almasy L, Bauer LO *et al.* Variations in GABRA2, encoding the alpha 2 subunit of the GABA(A) receptor, are associated with alcohol dependence and with brain oscillations. *Am J Hum Genet* 2004; **74**: 705–714.
- 144 Mombereau C, Kaupmann K, Froestl W, Sansig G, van der PH, Cryan JF. Genetic and pharmacological evidence of a role for GABA(B) receptors in the modulation of anxiety- and antidepressant-like behavior. *Neuropsychopharmacology* 2004; 29: 1050–1062.
- 145 Borden LA. GABA transporter heterogeneity: pharmacology and cellular localization. *Neurochem Int* 1996; **29**: 335–356.
- 146 Volk D, Austin M, Pierri J, Sampson A, Lewis D. GABA transporter-1 mRNA in the prefrontal cortex in schizophrenia: decreased expression in a subset of neurons. *Am J Psychiatry* 2001; **158**: 256–265.
- 147 Ohnuma T, Augood SJ, Arai H, McKenna PJ, Emson PC. Measurement of GABAergic parameters in the prefrontal cortex in schizophrenia: focus on GABA content, GABA(A) receptor alpha-1 subunit messenger RNA and human GABA transporter-1 (HGAT-1) messenger RNA expression. *Neuroscience* 1999; 93: 441–448.
- 148 Gasnier B. The SLC32 transporter, a key protein for the synaptic release of inhibitory amino acids. *Pflugers Arch* 2004; 447: 756–759.
- 149 Heckers S, Stone D, Walsh J, Shick J, Koul P, Benes FM. Differential hippocampal expression of glutamic acid decarboxylase 65 and 67 messenger RNA in bipolar disorder and schizophrenia. *Arch Gen Psychiatry* 2002; **59**: 521–529.
- 150 Guidotti A, Auta J, Davis JM, Giorgi-Gerevini V, Dwivedi Y, Grayson DR et al. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry 2000; 57: 1061–1069.
- 151 Berrettini WH, Nurnberger JI, Post RM, Gershon ES. Platelet 3H-imipramine binding in euthymic bipolar patients. *Psychiatry Res* 1982; 7: 215–219.
- 152 Zhou L, Chillag KL, Nigro MA. Hyperekplexia: a treatable neurogenetic disease. *Brain Dev* 2002; **24**: 669–674.
- 153 Du J, Gray NA, Falke CA, Chen W, Yuan P, Szabo ST et al. Modulation of synaptic plasticity by antimanic agents: the role of AMPA glutamate receptor subunit 1 synaptic expression. *J Neurosci* 2004; 24: 6578–6589.
- 154 Kamboj RK, Schoepp DD, Nutt S, Shekter L, Korczak B, True RA et al. Molecular cloning, expression, and pharmacological characterization of humEAA1, a human kainate receptor subunit. J Neurochem 1994; 62: 1–9.
- 155 Mundo E, Tharmalingham S, Neves-Pereira M, Dalton EJ, Macciardi F, Parikh SV *et al.* Evidence that the *N*-methyl-Daspartate subunit 1 receptor gene (GRIN1) confers susceptibility to bipolar disorder. *Mol Psychiatry* 2003; **8**: 241–245.
- 156 Itokawa M, Yamada K, Iwayama-Shigeno Y, Ishitsuka Y, Detera-Wadleigh S, Yoshikawa T. Genetic analysis of a functional GRIN2A promoter (GT)n repeat in bipolar disorder pedigrees in humans. *Neurosci Lett* 2003; 345: 53–56.
- 157 Miyamoto Y, Yamada K, Nagai T, Mori H, Mishina M, Furukawa H et al. Behavioural adaptations to addictive drugs in mice lacking the NMDA receptor epsilon1 subunit. Eur J Neurosci 2004; 19: 151–158.
- 158 Chaki S, Yoshikawa R, Hirota S, Shimazaki T, Maeda M, Kawashima N *et al.* MGS0039: a potent and selective group II metabotropic glutamate receptor antagonist with antidepressantlike activity. *Neuropharmacology* 2004; **46**: 457–467.
- 159 Wieronska JM, Branski P, Szewczyk B, Palucha A, Papp M, Gruca P *et al.* Changes in the expression of metabotropic glutamate receptor 5 (mGluR5) in the rat hippocampus in an animal model of depression. *Pol J Pharmacol* 2001; **53**: 659–662.

- 160 Cryan JF, Kelly PH, Neijt HC, Sansig G, Flor PJ, van Der Putten H. Antidepressant and anxiolytic-like effects in mice lacking the group III metabotropic glutamate receptor mGluR7. Eur J Neurosci 2003; 17: 2409–2417.
- 161 O'Shea RD. Roles and regulation of glutamate transporters in the central nervous system. *Clin Exp Pharmacol Physiol* 2002; 29: 1018–1023.
- 162 Smith RE, Haroutunian V, Davis KL, Meador-Woodruff JH. Expression of excitatory amino acid transporter transcripts in the thalamus of subjects with schizophrenia. *Am J Psychiatry* 2001; **158**: 1393–1399.
- 163 McCullumsmith RE, Meador-Woodruff JH. Striatal excitatory amino acid transporter transcript expression in schizophrenia, bipolar disorder, and major depressive disorder. *Neuropsychopharmacology* 2002; 26: 368–375.
- 164 Chen L, Muhlhauser M, Yang CR. Glycine tranporter-1 blockade potentiates NMDA-mediated responses in rat prefrontal cortical neurons in vitro and in vivo. J Neurophysiol 2003; 89: 691–703.
- 165 Hashimoto K, Fukushima T, Shimizu E, Komatsu N, Watanabe H, Shinoda N et al. Decreased serum levels of D-serine in patients with schizophrenia: evidence in support of the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia. Arch Gen Psychiatry 2003; 60: 572–576.
- 166 Kim SJ, Young LJ, Gonen D, Veenstra-VanderWeele J, Courchesne R, Courchesne E et al. Transmission disequilibrium testing of arginine vasopressin receptor 1A (AVPR1A) polymorphisms in autism. Mol Psychiatry 2002; 7: 503–507.
- 167 Douglass AB. Narcolepsy: differential diagnosis or etiology in some cases of bipolar disorder and schizophrenia? CNS Spectr 2003; 8: 120–126.
- 168 Caberlotto L, Hurd YL. Reduced neuropeptide Y mRNA expression in the prefrontal cortex of subjects with bipolar disorder. *Neuroreport* 1999; **10**: 1747–1750.
- 169 Kinkead B, Binder EB, Nemeroff CB. Does neurotensin mediate the effects of antipsychotic drugs? *Biol Psychiatry* 1999; 46: 340-351.
- 170 Ribeiro SJ, De Lima TC. Naloxone-induced changes in tachykinin NK3 receptor modulation of experimental anxiety in mice. *Neurosci Lett* 1998; **258**: 155–158.
- 171 Carlezon Jr WA, Thome J, Olson VG, Lane-Ladd SB, Brodkin ES, Hiroi N et al. Regulation of cocaine reward by CREB. Science 1998; 282: 2272–2275.
- 172 Deckert J, Nothen MM, Albus M, Franzek E, Rietschel M, Ren H et al. Adenosine A1 receptor and bipolar affective disorder: systematic screening of the gene and association studies. Am J Med Genet 1998; 81: 18–23.
- 173 DeteraWadleigh SD, Badner JA, Goldin LR, Berrettini WH, Sanders AR, Rollins DY *et al.* Affected-sib-pair analyses reveal support of prior evidence for a susceptibility locus for bipolar disorder, on 21q. *Am J Hum Genet* 1996; **58**: 1279.
- 174 Muller M, Holsboer F, Keck ME. Genetic modification of corticosteroid receptor signalling: novel insights into pathophysiology and treatment strategies of human affective disorders. *Neuropeptides* 2002; **36**: 117–131.
- 175 Wang JF, Bown CD, Chen B, Young LT. Identification of mood stabilizer-regulated genes by differential-display PCR. Int J Neuropsychopharmacol 2001; 4: 65–74.
- 176 Futamura T, Toyooka K, Iritani S, Niizato K, Nakamura R, Tsuchiya K *et al.* Abnormal expression of epidermal growth factor and its receptor in the forebrain and serum of schizophrenic patients. *Mol Psychiatry* 2002; **7**: 673–682.
- 177 Bezchlibnyk YB, Wang JF, McQueen GM, Young LT. Gene expression differences in bipolar disorder revealed by cDNA array analysis of post-mortem frontal cortex. *J Neurochem* 2001; 79: 826–834.
- 178 Faivre L, Gosset P, Cormier-Daire V, Odent S, Amiel J, Giurgea I *et al.* Overgrowth and trisomy 15q26.1-qter including the IGF1 receptor gene: report of two families and review of the literature. *Eur J Hum Genet* 2002; **10**: 699–706.
- 179 Zubenko GS, Maher B, Hughes III HB, Zubenko WN, Stiffler JS, Kaplan BB et al. Genome-wide linkage survey for genetic loci that influence the development of depressive disorders in families with recurrent, early-onset, major depression. Am J Med Genet 2003; **123B**: 1–18.

- 180 Toyota T, Yamada K, Saito K, Detera-Wadleigh SD, Yoshikawa T. Association analysis of adenylate cyclase type 9 gene using pedigree disequilibrium test in bipolar disorder. *Mol Psychiatry* 2002; 7: 450–452.
- 181 Vuoristo JT, Berrettini WH, Overhauser J, Prockop DJ, Ferraro TN, Ala-Kokko L. Sequence and genomic organization of the human G-protein Golfalpha gene (GNAL) on chromosome 18p11, a susceptibility region for bipolar disorder and schizophrenia. *Mol Psychiatry* 2000; 5: 495–501.
- 182 Ye Y, Conti M, Houslay MD, Farooqui SM, Chen M, O'Donnell JM. Noradrenergic activity differentially regulates the expression of rolipram-sensitive, high-affinity cyclic AMP phosphodiesterase (PDE4) in rat brain. J Neurochem 1997; 69: 2397–2404.
- 183 Suda S, Nibuya M, Ishiguro T, Suda H. Transcriptional and translational regulation of phosphodiesterase type IV isozymes in rat brain by electroconvulsive seizure and antidepressant drug treatment. J Neurochem 1998; 71: 1554–1563.
- 184 Zhang HT, Huang Y, Jin SL, Frith SA, Suvarna N, Conti M et al. Antidepressant-like profile and reduced sensitivity to rolipram in mice deficient in the PDE4D phosphodiesterase enzyme. *Neuropsychopharmacology* 2002; 27: 587–595.
- 185 Chang A, Li PP, Warsh JJ. cAMP-Dependent protein kinase (PKA) subunit mRNA levels in postmortem brain from patients with bipolar affective disorder (BD). *Brain Res Mol Brain Res* 2003; 116: 27–37.
- 186 Chang A, Li PP, Warsh JJ. Altered cAMP-dependent protein kinase subunit immunolabeling in post-mortem brain from patients with bipolar affective disorder. J Neurochem 2003; 84: 781–791.
- 187 Garzon J, Rodriguez-Munoz M, Lopez-Fando A, Garcia-Espana A, Sanchez-Blazquez P. RGSZ1 and GAIP regulate mu- but not deltaopioid receptors in mouse CNS: role in tachyphylaxis and acute tolerance. *Neuropsychopharmacology* 2004; 29: 1091–1104.
- 188 Mirnics K, Middleton FA, Stanwood GD, Lewis DA, Levitt P. Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. *Mol Psychiatry* 2001; 6: 293–301.
- 189 Smith FD, Oxford GS, Milgram SL. Association of the D2 dopamine receptor third cytoplasmic loop with spinophilin, a protein phosphatase-1-interacting protein. *J Biol Chem* 1999; 274: 19894–19900.
- 190 Frankland PW, O'Brien C, Ohno M, Kirkwood A, Silva AJ. Alpha-CaMKII-dependent plasticity in the cortex is required for permanent memory. *Nature* 2001; **411**: 309–313.
- 191 Chandy KG, Fantino E, Wittekindt O, Kalman K, Tong LL, Ho TH et al. Isolation of a novel potassium channel gene hSKCa3 containing a polymorphic CAG repeat: a candidate for schizophrenia and bipolar disorder? *Mol Psychiatry* 1998; **3**: 32–37.
- 192 Coyle JT, Duman RS. Finding the intracellular signaling pathways affected by mood disorder treatments. *Neuron* 2003; **38**: 157–160.
- 193 Manji HK, Lenox RH. Ziskind–Somerfeld Research Award. Protein kinase C signaling in the brain: molecular transduction of mood stabilization in the treatment of manic-depressive illness. *Biol Psychiatry* 1999; **46**: 1328–1351.
- 194 Jacobsen NJ, Franks EK, Owen MJ, Craddock NJ. Mutational analysis of phospholipase A2A: a positional candidate susceptibility gene for bipolar disorder. *Mol Psychiatry* 1999; 4: 274–279.
- 195 Papadimitriou GN, Dikeos DG, Souery D, Del Favero J, Massat I, Avramopoulos D et al. Genetic association between the phospholipase A2 gene and unipolar affective disorder: a multicentre case-control study. *Psychiatr Genet* 2003; 13: 211–220.
- 196 Turecki G, Grof P, Cavazzoni P, Duffy A, Grof E, Ahrens B et al. Evidence for a role of phospholipase C-gamma1 in the pathogenesis of bipolar disorder. *Mol Psychiatry* 1998; 3: 534–538.
- 197 Zill P, Baghai TC, Zwanzger P, Schule C, Minov C, Riedel M et al. Evidence for an association between a G-protein beta3-gene variant with depression and response to antidepressant treatment. Neuroreport 2000; 11: 1893–1897.
- 198 Ford CE, Skiba NP, Bae H, Daaka Y, Reuveny E, Shekter LR *et al.* Molecular basis for interactions of G protein betagamma subunits with effectors. *Science* 1998; **280**: 1271–1274.

- 199 Manji HK, Chen G. PKC, MAP kinases and the bcl-2 family of proteins as long-term targets for mood stabilizers. *Mol Psychiatry* 2002; **7**(Suppl 1): S46–S56.
- 200 Toyota T, Watanabe A, Shibuya H, Nankai M, Hattori E, Yamada K et al. Association study on the DUSP6 gene, an affective disorder candidate gene on 12q23, performed by using fluore-scence resonance energy transfer-based melting curve analysis on the LightCycler. *Mol Psychiatry* 2000; 5: 489–494.
- 201 Mathews R, Li PP, Young LT, Kish SJ, Warsh JJ. Increased G alpha q/11 immunoreactivity in postmortem occipital cortex from patients with bipolar affective disorder. *Biol Psychiatry* 1997; 41: 649–656.
- 202 Yoshikawa T, Kikuchi M, Saito K, Watanabe A, Yamada K, Shibuya H *et al.* Evidence for association of the myo-inositol monophosphatase 2 (IMPA2) gene with schizophrenia in Japanese samples. *Mol Psychiatry* 2001; **6**: 202–210.
- 203 Stopkova P, Saito T, Fann CS, Papolos DF, Vevera J, Paclt I et al. Polymorphism screening of PIP5K2A: a candidate gene for chromosome 10p-linked psychiatric disorders. Am J Med Genet 2003; 123B: 50–58.
- 204 Saito T, Stopkova P, Diaz L, Papolos DF, Boussemart L, Lachman HM. Polymorphism screening of PIK4CA: possible candidate gene for chromosome 22q11-linked psychiatric disorders. Am J Med Genet 2003; 116B: 77–83.
- 205 Benedetti F, Serretti A, Colombo C, Barbini B, Lorenzi C, Campori E et al. Influence of CLOCK gene polymorphism on circadian mood fluctuation and illness recurrence in bipolar depression. Am J Med Genet 2003; 123B: 23–26.
- 206 Taheri S, Mignot E. The genetics of sleep disorders. Lancet Neurol 2002; 1: 242.
- 207 Nurnberger Jr JI, Adkins S, Lahiri DK, Mayeda A, Hu K, Lewy A *et al.* Melatonin suppression by light in euthymic bipolar and unipolar patients. *Arch Gen Psychiatry* 2000; **57**: 572–579.
- 208 Partonen T, Lonnqvist J. Seasonal affective disorder. Lancet 1998; 352: 1369–1374.
- 209 Liu C, Weaver DR, Jin X, Shearman LP, Pieschl RL, Gribkoff VK *et al.* Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. *Neuron* 1997; **19**: 91–102.
- 210 Nyegaard M, Borglum AD, Bruun TG, Collier DA, Russ C, Mors O et al. Novel polymorphisms in the somatostatin receptor 5 (SSTR5) gene associated with bipolar affective disorder. *Mol Psychiatry* 2002; 7: 745–754.
- 211 Jin X, von Gall C, Pieschl RL, Gribkoff VK, Stehle JH, Reppert SM *et al.* Targeted disruption of the mouse Mel(1b) melatonin receptor. *Mol Cell Biol* 2003; **23**: 1054–1060.
- 212 Hannibal J. Neurotransmitters of the retino-hypothalamic tract. *Cell Tissue Res* 2002; **309**: 73–88.
- 213 Ishiguro H, Ohtsuki T, Okubo Y, Kurumaji A, Arinami T. Association analysis of the pituitary adenyl cyclase activating peptide gene (PACAP) on chromosome 18p11 with schizophrenia and bipolar disorders. *J Neural Transm* 2001; **108**: 849–854.
- 214 Johansson C, Willeit M, Smedh C, Ekholm J, Paunio T, Kieseppa T et al. Circadian clock-related polymorphisms in seasonal affective disorder and their relevance to diurnal preference. Neuropsychopharmacology 2003; 28: 734–739.
- 215 Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. *Science* 2003; 299: 256–259.
- 216 Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA *et al.* Disruption of two novel genes by a translocation co-segregating with schizophrenia. *Hum Mol Genet* 2000; **9**: 1415–1423.
- 217 Ozeki Y, Tomoda T, Kleiderlein J, Kamiya A, Bord L, Fujii K *et al.* Disrupted-in-schizophrenia-1 (DISC-1): mutant truncation prevents binding to NudE-like (NUDEL) and inhibits neurite outgrowth. *Proc Natl Acad Sci USA* 2003; **100**: 289–294.
- 218 Costa E, Chen Y, Davis J, Dong E, Noh JS, Tremolizzo L et al. REELIN and schizophrenia: a disease at the interface of the genome and the epigenome. *Mol Intervent* 2002; 2: 47–57.
- 219 Tokuoka SM, Ishii S, Kawamura N, Satoh M, Shimada A, Sasaki S et al. Involvement of platelet-activating factor and LIS1 in neuronal migration. Eur J Neurosci 2003; **18**: 563–570.

- 220 Sakurai K, Migita O, Toru M, Arinami T. An association between a missense polymorphism in the close homologue of L1 (CHL1, CALL) gene and schizophrenia. *Mol Psychiatry* 2002; 7: 412–415.
- 221 Poltorak M, Wright R, Hemperly JJ, Torrey EF, Issa F, Wyatt RJ et al. Monozygotic twins discordant for schizophrenia are discordant for N-CAM and L1 in CSF. Brain Res 1997; 751: 152–154.
- 222 Kurumaji A, Nomoto H, Okano T, Toru M. An association study between polymorphism of L1CAM gene and schizophrenia in a Japanese sample. *Am J Med Genet* 2001; **105**: 99–104.
- 223 Arai M, Itokawa M, Yamada K, Toyota T, Arai M, Haga S et al. Association of neural cell adhesion molecule 1 gene polymorphisms with bipolar affective disorder in Japanese individuals. Biol Psychiatry 2004; 55: 804–810.
- 224 Liu H, Heath SC, Sobin C, Roos JL, Galke BL, Blundell ML et al. Genetic variation at the 22q11 PRODH2/DGCR6 locus presents an unusual pattern and increases susceptibility to schizophrenia. Proc Natl Acad Sci USA 2002; 99: 3717–3722.