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No Major Schizophrenia Locus
Detected on Chromosome 1q in

a Large Multicenter Sample
Douglas F. Levinson,1* Peter A. Holmans,2 Claudine Laurent,3
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Reports of substantial evidence for genetic linkage of schizophrenia to chro-
mosome 1q were evaluated by genotyping 16 DNA markers across 107 cen-
timorgans of this chromosome in a multicenter sample of 779 informative
schizophrenia pedigrees. No significant evidence was observed for such linkage,
nor for heterogeneity in allele sharing among the eight individual samples.
Separate analyses of European-origin families, recessive models of inheritance,
and families with larger numbers of affected cases also failed to produce
significant evidence for linkage. If schizophrenia susceptibility genes are present
on chromosome 1q, their population-wide genetic effects are likely to be small.

Schizophrenia causes severe morbidity in 0.2
to 1% of the world’s population, with a her-
itability of 0.70 to 0.85 attributable to com-
plex inheritance (1). No specific genetic vari-
ation has been convincingly associated with
susceptibility. Some genome-wide scans
have produced significant evidence for link-
age, but no result has been consistently rep-
licable (2). In small genome scans of complex
disorders, the largest estimated genetic ef-
fects often reflect a substantial upward bias,
requiring evaluation in independent, larger
samples (3). The present multicenter pedigree
sample was assembled to determine the de-
gree of support for schizophrenia candidate
regions (4, 5).

Several recent reports have suggested
schizophrenia susceptibility loci of major ef-
fect on chromosome 1q. Brzustowicz et al.
(6 ) reported a significant multipoint lod score
(logarithm of the odds ratio for linkage) of
6.50 between markers D1S1653 and
D1S1679 [162 to 163 cM from the p terminus

(7 )] in 22 Canadian-Celtic families. Nearby,
Gurling et al. (8) reported a multipoint lod
score of 3.2 (176.6 cM) in 13 British and
Icelandic pedigrees. More distally, Ekelund
et al. (9) reported lod scores of 3.2 (240.4
cM) in 168 Finnish nuclear families, and of
2.30 (222 cM) in 53 families from an isolated
subpopulation. Finally, the Disrupted in
Schizophrenia (DISC) genes DISC-1 and
DISC-2 (10) (238.5 cM) are disrupted by a
balanced (1;11) (q42.1;q14.3) translocation
that segregates with schizophrenia and mood
disorders in a Scottish pedigree (11).

To evaluate these findings, we genotyped 16
microsatellite markers (12) on chromosome 1q
in 779 informative pedigrees containing 984
affected sibling pairs (ASPs) and 1918 geno-
typed individuals with schizophrenia or schizo-
affective disorder, from eight independently
collected samples (13) [Web tables 1 and 2
(14)]. The chromosome 1q findings were re-
ported after formation of the multicenter sample
(i.e., there was no selection bias). Primary sta-

tistical analyses included multipoint ASP (15)
and nonparametric linkage (NPL) analyses (16)
and logistic regression analysis (17) to test for
intersample heterogeneity of sharing in ASPs
and for linkage while taking intersample heter-
ogeneity into account (18). Results are shown
in Fig. 1 [for details, see Web table 3 (14)].
Only one of the individual samples [National
Institute of Mental Health (NIMH)] produced a
nominally significant result (P 5 0.049) near
the Finnish isolate peak (9). We observed no
other significant results in individual samples or
in the combined sample.

There are several possible explanations for
the absence of support for linkage in this large
sample, aside from the possibility of undetected
genotyping errors or differences in diagnostic
practice. Ethnicity could be a factor (19). How-
ever, many families in the University of Wales
College of Medicine (Cardiff ) and Virginia
Commonwealth University (VCU)/Ireland
samples had ethnic backgrounds (Scottish,
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Welsh, Irish, Anglo-Saxon) similar to the Celtic
Canadian sample. Although the peak Cardiff
NPL score (0.92, 160 cM) was near the Cana-
dian peak, any genetic effect would be small; in
this sample, the estimate of 53% identical-by-
descent (IBD) allele sharing, with 22.7% of
ASPs sharing 0 alleles by descent, predicts a
locus-specific relative risk to siblings of 1.1.
The only nominally significant result observed
here was on distal 1q, in the ethnically diverse

NIMH sample. We then analyzed 679 Europe-
an-origin and 58 African-origin families sepa-
rately [Web table 4 (14)] (20). For European-
origin families, maximum values were Zall 5
0.08 (222 cM) and maximum lod score
(MLS) 5 0.48 (222 cM, 51% IBD sharing).
Three samples produced NPL scores of .1.0
[NIMH, 2.35, 222 cM, P 5 0.015; Johns Hop-
kins University (JHU), 1.52, 258.1 cM, P 5
0.09; Australia/U.S. (AU/US), 1.33, 213.9 cM,

P 5 0.126); only the NIMH sample produced
an MLS value of .1.0 (1.32, 222 cM, 60%
IBD sharing, P 5 0.032). At the Canadian peak
location, no single sample produced an MLS
value of .0.16 or an NPL score of .0.91. For
African-origin families, maximum values were
NPL 5 1.25 (193.3 cM, P 5 0.18) and MLS 5
0.55 (193.3 cM, 56% sharing, P 5 0.18). Note
that genetic distances among Europeans are
small compared with other world populations,
although Finns and Icelanders are outliers (21).
Our sample does not include comparable fam-
ilies to evaluate the possibility of linkage spe-
cifically in Finnish families on distal 1q (9) or
in Icelandic families on proximal 1q (8).

There were more affected individuals per
family in the Canadian sample (mean 5 3.6)
than in the present data set (mean 5 2.5).
Analysis of 209 families with three or more
affected cases produced MLS 5 0.21 (222.0
cM, 52% IBD sharing) and Zall 5 0.87 (222.0
cM). The 52 families with four or more cases
produced MLS 5 0.04 (193.3 cM, 51% IBD
sharing) and Zall 5 0.46 (258.1 cM). Thus,
larger families did not produce evidence for
linkage [Web table 5 (14 )]. Finally, the MLS
in the Canadian study was observed for a
parametric analysis under a recessive genetic
model. We reanalyzed our data under several
recessive genetic models by two-point and
multipoint analyses [Web table 6 (14 )] (22).
The largest heterogeneity lod score (Zmax) for
the entire sample was 0.31 (multipoint, unaf-
fecteds coded as unknown diagnosis; 185.2
cM), and the largest Zmax in an individual
sample was 0.65 (multipoint, affecteds only;
210.5 cM, in the VCU/Ireland sample). Our
sample would be expected to have 100%
power to detect a large genetic effect under
the reported recessive model, and to have
good power for lsibs (relative risk to siblings)
values of 1.30 or greater (23). Thus, our
failure to find evidence for a major schizo-
phrenia susceptibility locus on proximal 1q
could not be explained by ethnicity, statistical
approach, or pedigree size. The most parsi-
monious explanation is that the genetic effect
reported in the Canadian data set was due to
the upward bias caused by maximizing scores
across the genome (3), particularly for small
data sets and for loci of small effect, because
the underlying genetic parameters are being
maximized along with the evidence for link-
age: “If one assumes that a published locus-
specific effect-size estimate . . . is accu-
rate . . . , one most likely overestimates the
power to replicate, perhaps greatly so. . . . A
corollary is that failure of replication does not
imply that a reported finding is false, even
though . . . the locus-specific effect-size esti-
mate from the initial study is likely an over-
estimate” (3). We cannot determine whether
the Canadian finding is a false-positive or a
true-positive result whose genetic effect is
smaller than reported.
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Fig. 1. Results of ASP analysis (A) and NPL analysis (B). Shown are multipoint MLS (A) and NPL
scores (B) for each sample and for all families combined. Applied Biosystems map locations (7) are
shown. Locations of reported linkage peaks were extrapolated from markers common to the
Marshfield (7) and Applied Biosystems maps—for example, for the Canadian data set (6), the peak
at about 168.8 (Marshfield) is shown at 162.5 cM (2 cM proximal to D1S1679); for U.K./Iceland (9)
at D1S196 (genotyped here; 176.6 cM); for the Finnish national data set (9) at D1S2709 (240.4 cM);
for the Finnish isolate (9) at D1S245 (222.0 cM); and for DISC-1 (10) near D1S251 [245.05
(Marshfield) shown at 238.52 cM].
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In this large multicenter sample, we
were unable to detect a schizophrenia sus-
ceptibility locus of major effect on chromo-
some 1q. It remains possible that the genes
identified as disrupted in the Scottish trans-
location finding (10, 11), or genes in the
regions supported by the Finnish (9) and/or
Canadian (6 ) samples, will be shown to
have small effects on schizophrenia suscep-
tibility in other populations, or that the
pathways in which these genes participate
will have more major effects. Identifying
such genes to elucidate the pathogenesis of
this devastating disorder remains a major
goal of schizophrenia research.
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Influence of Gene Action
Across Different Time Scales

on Behavior
Y. Ben-Shahar,1 A. Robichon,3 M. B. Sokolowski,4

G. E. Robinson1,2*

Genes can affect natural behavioral variation in different ways. Allelic variation
causes alternative behavioral phenotypes, whereas changes in gene expression
can influence the initiation of behavior at different ages. We show that the
age-related transition by honey bees from hive work to foraging is associated
with an increase in the expression of the foraging (for) gene, which encodes a
guanosine 39,59-monophosphate (cGMP)–dependent protein kinase (PKG).
cGMP treatment elevated PKG activity and caused foraging behavior. Previous
research showed that allelic differences in PKG expression result in two Dro-
sophila foraging variants. The same gene can thus exert different types of
influence on a behavior.

Some genes influence behavior via genetic
polymorphisms, whereas other genes influ-
ence behavior via developmental polymor-
phisms. But little is known about whether the
same gene, or orthologs of a gene, can influ-
ence behavior in both ways. This knowledge

is necessary to develop a comprehensive un-
derstanding of how genes and the environ-
ment influence behavior, because both in-
volve genomic responsiveness, albeit over
vastly different scales of time.

The foraging gene (for) affects naturally
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